Journal of Innovative Optical Health Sciences, Volume. 13, Issue 5, 2041001(2020)
Ultrabright bimetallic AuAg complex: From luminescence mechanism to biological application
[1] [1] X. D. Zhang, Z. Luo, J. Chen, X. Shen, S. Song, Y. Sun, S. Fan, F. Fan, D. T. Leong, J. Xie, "Ultrasmall Au1012(SG)1012 nanomolecules for high tumor specificity and cancer radiotherapy," Adv. Mater. 26, 4565–4568 (2014).
[2] [2] S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, "A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25x nanoclusters: The 13th silver atom matters," Angew.Chem. Int. Ed. 53, 2376–2380 (2014).
[3] [3] Z. Gan, Y. Lin, L. Luo, G. Han, W. Liu, Z. Liu, C. Yao, L. Weng, L. Liao, J. Chen, "Fluorescent gold nanoclusters with interlocked staples and a fully thiolate-bound kernel," Angew. Chem. Int. Ed. 128, 11739–11743 (2016).
[4] [4] X.-D. Zhang, D. Wu, X. Shen, P.-X. Liu, F.-Y. Fan, S.-J. Fan, "In vivo renal clearance, biodistribution, toxicity of gold nanoclusters," Biomaterials 33, 4628–4638 (2012).
[5] [5] H. Wang, X. Mu, H. He, X.-D. Zhang, "Cancer radiosensitizers," Trends Pharmacol. Sci. 39, 24–48 (2018).
[6] [6] H. Wang, X. Mu, J. Yang, Y. Liang, X.-D. Zhang, D. Ming, "Brain imaging with near-infrared fluorophores," Coordin. Chem. Rev. 380, 550–571 (2019).
[7] [7] H. Haberland, Across the periodic table, Clusters of Atoms and Molecules:Theory, Experiment, and Clusters of Atoms, pp. 314–315, Springer-Verlag (1995).
[8] [8] R. Jin, C. Zeng, M. Zhou, Y. Chen, "Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities," Chem. Rev. 116, 10346 (2016).
[9] [9] L. Qi, T. Y. Luo, M. G. Taylor, S. Wang, X. Zhu, Y. Song, G. Mpourmpakis, N. L. Rosi, R. Jin, "Molecular "surgery" on a 23-gold-atom nanoparticle," Sci. Adv. 3, 1603193 (2017).
[10] [10] Q. Yao, X. Yuan, T. Chen, D. T. Leong, J. Xie, "Engineering functional metal materials at the atomic level," Adv. Mater. 30, 1802751 (2018).
[11] [11] H. Liu, G. Hong, Z. Luo, J. Chen, J. Chang, M. Gong, H. He, J. Yang, X. Yuan, L. Li, X. Mu, J. Wang, W. Mi, J. Luo, J. Xie, X.-D. Zhang, "Atomic-precision gold clusters for NIR-II imaging," Adv. Mater. 31, 1901015 (2019).
[12] [12] Z. K. Wu, R. C. Jin, "On the ligand's role in the fluorescence of gold nanoclusters," Nano Lett. 10, 2568–2573 (2010).
[13] [13] I. K. Robinson, "X-ray structure determination of the reconstructed Au(110) surface," Acta Crystallogr. Sec. A 40, C194–C194 (1984).
[14] [14] S. Kenzler, C. Schrenk, A. Schnepf, "Au108S24 (PPh3)16: A highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters," Angew. Chem. Int. Ed. 56, 393–396 (2017).
[15] [15] K. G. Stamplecoskie, P. V. Kamat, "Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity," J. Am. Chem. Soc. 136, 11093–11099 (2014).
[16] [16] A. Kim, C. Zeng, M. Zhou, R. Jin, "Surface engineering of Au36(SR)24 nanoclusters for photoluminescence enhancement," Part. Part. Sys. Charact. 34, 1600388 (2017).
[17] [17] Y. Yu, S. Y. New, J. Xie, X. Su, Y. N. Tan, "Protein-based fluorescent metal nanoclusters for small molecular drug screening," Chem. Commun. 50, 13805–13808 (2014).
[18] [18] Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, T. Tsukuda, "Extremely high stability of glutathionate-protected Au25 clusters against core etching," Small 3, 835–839 (2007).
[19] [19] C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. Yeh, "Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications," ACS Nano 3, 395 (2009).
[20] [20] Z. Wu, R. Jin, "Stability of the two Au-S binding modes in Au25(SG)18 nanoclusters probed by nmr and optical spectroscopy," ACS Nano 3, 2036–2042 (2009).
[21] [21] I. Chakraborty, T. Udayabhaskararao, T. Pradeep, "High temperature nucleation and growth of glutathione protected Ag75 clusters," Chem. Commun. 48, 6788–6790 (2012).
[22] [22] M. Bardaji, M. J. Calhorda, P. J. Costa, P. G. Jones, A. Laguna, M. R. Perez, M. D. Villacampa, "Synthesis, structural characterization, and theoretical studies of gold(I) and gold(I)-gold(III) thiolate complexes: Quenching of gold(I) thiolate luminescence," Inorg. Chem. 45, 1059–1068 (2006).
[23] [23] Y. T. Chen, T. Q. Yang, H. F. Pan, Y. F. Yuan, L. Chen, M. W. Liu, K. Zhang, S. J. Zhang, P. Wu, J. H. Xu, "Photoemission mechanism of watersoluble silver nanoclusters: Ligand-to-metal-metal charge transfer vs strong coupling between surface plasmon and emitters," J. Am. Chem. Soc. 136, 1686–1689 (2014).
[24] [24] J. Zheng, P. R. Nicovich, R. M. Dickson, "Highly fluorescent noble-metal quantum dots," Annu. Rev. Phys. Chem. 58, 409–431 (2007).
[25] [25] Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, J. Xie, "From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters," J. Am. Chem. Soc. 134, 16662–16670 (2012).
[26] [26] Z. Wang, Z. Zhu, C. Zhao, Q. Yao, X. Li, H. Liu, F. Du, X. Yuan, J. Xie, "Silver doping induced luminescence enhancement and red shift of gold nanoclusters with aggregation-induced emission," Chem. Asian J. 14, 765–769 (2019).
[27] [27] X. L. Pei, Y. Yang, Z. Lei, S. S. Chang, Z. J. Guan, X. K. Wan, T. B. Wen, Q. M. Wang, "A highly active gold(I)-silver(I) oxo cluster activating sp3 C–H bonds of methyl ketones under mild conditions," J. Am. Chem. Soc. 137, 5520–5525 (2015).
[28] [28] G. Soldan, M. A. Aljuhani, M. S. Bootharaju, L. G. AbdulHalim, M. R. Parida, A. H. Emwas, O. F. Mohammed, O. M. Bakr, "Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield," Angew. Chem. Int. Ed. 55, 5749–5753 (2016).
[29] [29] K.-B. Cai, H.-Y. Huang, L.-Y. Chang, C.-T. Yuan, The Glutathione-Capped Gold Nanoclusters Based on Doping Zinc Ion with Aggregation-Induced Emission Enhancement, p. 6. SPIE Photonics Europe, SPIE (2018).
[30] [30] E. Oh, J. B. Delehanty, L. D. Field, A. J. Makinen, R. Goswami, A. L. Huston, I. L. Medintz, "Synthesis and characterization of pegylated luminescent gold nanoclusters doped with silver and other metals," Chem. Mater. 28, 8676–8688 (2016).
[31] [31] X. Kang, S. Wang, Y. Song, S. Jin, G. Sun, H. Yu, M. Zhu, "Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper (I) complexes with gold(0) species," Angew. Chem. Int. Ed. 55, 3675–3678 (2016).
[32] [32] Y. Sha, J. Chai, C. Tao, R. Bo, Y. Pan, H. Yu, M. Zhu, "Crystal structures of two new gold– copper bimetallic nanoclusters: CuxAu25x (PPh3)10(PhC2H4S)5Cl2t 2 and Cu3Au34(PPh3)13 (tBuPhCH2S)6S3t 2 ," Inorg. Chem. 56, 1771–1774 (2017).
[33] [33] Y. Liu, X. Chai, X. Cai, M. Chen, R. Jin, W. Ding, Y. Zhu, "Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation," Angew. Chem. Int. Ed. 55, 9775–9779 (2018).
[34] [34] Z. Wang, R. Senanayake, C. M. Aikens, W. M. Chen, C. H. Tung, D. Sun, "Gold-doped silver nanocluster [Au3Ag38(SCH2Ph)24X5]2 (X = Cl or Br)," Nanoscale 8, 18905–18911 (2016).
[35] [35] S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, "A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25x nanoclusters: The 13th silver atom matters," Angew. Chem. Int. Ed. 126, 2408–2412 (2014).
[36] [36] D. R. Kau?man, D. Alfonso, C. Matranga, H. Qian, R. Jin, "A quantum alloy: The ligand-protected Au25xAgx(SR)18 cluster," J. Phys. Chem. C 117, 7914–7923 (2013).
[37] [37] S. A. Patel, M. Cozzuol, J. M. Hales, C. I. Richards, M. Sartin, J. C. Hsiang, T. Vosch, J. W. Perry, R. M. Dickson, "Electron transfer-induced blinking in ag nanodot fluorescence," J. Phys. Chem. C 113, 20264–20270 (2009).
[38] [38] S. H. Cha, J. U. Kim, K. H. Kim, J. C. Lee, "Preparation and photoluminescent properties of gold(i)-alkanethiolate complexes having highly ordered supramolecular structures," Chem. Mater. 19, 6297–6303 (2007).
[39] [39] A. T. R. Williams, S. A. Winfield, J. N. Miller, "Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer," Analyst 108, 1067–1071 (1983).
[40] [40] M. M. Alvarez, J. T. Khoury, T. G. Schaa?, M. N. Shafigullin, I. Vezmar, R. L. Whetten, "Optical absorption spectra of nanocrystal gold molecules," J. Phys. Chem. B 101, 3706–3712 (1997).
[41] [41] W. H. Ding, C. Q. Huang, L. M. Guan, X. H. Liu, Z. X. Luo, W. X. Li, "Water-soluble au-13 clusters protected by binary thiolates: Structural accommodation and the use for chemosensing," Chem. Phys. Lett. 676, 18–24 (2017).
[42] [42] A. Das, C. Liu, H. Y. Byun, K. Nobusada, S. Zhao, N. Rosi, R. C. Jin, "Structure determination of [Au18(SR)14]," Angew. Chem. Int. Ed. 54, 3140– 3144 (2015).
[43] [43] L. Shang, S. J. Dong, G. U. Nienhaus, "Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications," Nano Today 6, 401–418 (2011).
[44] [44] J. Akola, M. Walter, R. L. Whetten, H. H?kkinen, H. Gr€onbeck, "On the structure of thiolate-protected Au25," J. Am. Chem. Soc. 130, 3756–3757 (2008).
[45] [45] A. Tlahuice, I. L. Garzón, "On the structure of the Au18(SR)14 cluster," Phys. Chem. Chem. Phys. 14, 3737 (2012).
[46] [46] D. E. Jiang, S. H. Overbury, S. Dai, "Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters," J. Am. Chem. Soc. 135, 8786–8789 (2013).
[47] [47] T. Udayabhaskararao, M. S. Bootharaju, T. Pradeep, "Thiolate-protected Ag32 clusters: Mass spectral studies of composition and insights into the Ag-thiolate structure from NMR," Nanoscale 5, 9404–9411 (2013).
[48] [48] S. Malola, H. H?kkinen, "Electronic structure and bonding of icosahedral core–shell gold–silver nanoalloy clusters Au144xAgx(SR)60," J. Phys. Chem. Lett. 2, 2316–2321 (2011).
[49] [49] S. Roy, A. Baral, R. Bhattacharjee, B. Jana, A. Datta, S. Ghosh, A. Banerjee, "Preparation of multi-coloured different sized fluorescent gold clusters from blue to nir, structural analysis of the blue emitting Au-7 cluster, and cell-imaging by the NIR gold cluster," Nanoscale 7, 1912–1920 (2015).
[50] [50] Q. Yao, X. Yuan, V. Fung, Y. Yu, D. T. Leong, D. Jiang, J. Xie, "Understanding seed-mediated growth of gold nanoclusters at molecular level," Nat. Commun. 8, 927 (2017).
[51] [51] Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, "Magic-numbered Au-n clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and spectroscopic characterization," J. Am. Chem. Soc. 126, 6518–6519 (2004).
[52] [52] E. S. Shibu, M. A. H. Muhammed, T. Tsukuda, T. Pradeep, "Ligand exchange of Au25SG18 leading to functionalized gold clusters: Spectroscopy, kinetics, and luminescence," J. Phys. Chem. C 112, 12168–12176 (2008).
[53] [53] Y. Q. Qiao, Y. Liu, H. X. Liu, Y. H. Li, W. Long, J. Y. Wang, X. Y. Mu, J. Chen, H. L. Liu, X. T. Bai, L. F. Liu, Y. M. Sun, Q. Liu, M. L. Guo, X. D. Zhang, "Fluorescence enhancement of gold nanoclusters via Zn doping for biomedical applications," RSC Adv. 8, 7396–7402 (2018).
[54] [54] W. Zhou, Y. Cao, D. Sui, W. Guan, C. Lu, J. Xie, "Ultrastable bsa-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells," Nanoscale 8, 9614–9620 (2016).
[55] [55] X. Le Guevel, V. Trouillet, C. Spies, K. Li, T. Laaksonen, D. Auerbach, G. Jung, M. Schneider, "High photostability and enhanced fluorescence of gold nanoclusters by silver doping," Nanoscale 4, 7624–7631 (2012).
[56] [56] S. A. Patel, M. Cozzuol, J. M. Hales, C. I. Richards, M. Sartin, J. C. Hsiang, T. Vosch, J. W. Perry, R. M. Dickson, "Electron transfer-induced blinking in ag nanodot fluorescence," J Phys. Chem. C 113, 20264–20270 (2009).
[57] [57] G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D, Gaussian, Inc., Wallingford CT, 2009.
[58] [58] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, "Xsede: Accelerating scientific discovery," Comput. Sci. Eng. 16, 62–74 (2014).
[59] [59] J. Xu, M. Yu, C. Peng, P. Carter, J. Tian, X. Ning, Q. Zhou, Q. Tu, G. Zhang, A. Dao, "Dose dependencies and biocompatibility of renal clearable gold nanoparticles: From mice to non-human primates," Angew. Chem. Int.l Ed. 57, 266–271 (2018).
[60] [60] B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu, R. Jin, J. Zheng, "Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime," Nat. Nanotechnol. 12, 1096–1102 (2017).
[61] [61] X. D. Zhang, J. Chen, Z. T. Luo, D. Wu, X. Shen, S. S. Song, Y. M. Sun, P. X. Liu, J. Zhao, S. D. Huo, S. J. Fan, F. Y. Fan, X. J. Liang, J. P. Xie, "Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy," Adv. Healthcare Mater. 3, 133–141 (2014).
[62] [62] Q. Liu, B. D. Guo, Z. Y. Rao, B. H. Zhang, J. R. Gong, "Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging," Nano Lett. 13, 2436–2441 (2013).
[63] [63] K. G. Stamplecoskie, Y. S. Chen, P. V. Kamat, "Excited-state behavior of luminescent glutathioneprotected gold clusters," J. Phys. Chem. C 118, 1370–1376 (2014).
[64] [64] M. Zhou, J. Zhong, S. Wang, Q. Guo, M. Zhu, Y. Pei, A. Xia, "Ultrafast relaxation dynamics of luminescent rod-shaped, silver-doped AgxAu25x clusters," J. Phys. Chem. C 119, 18790–18797 (2015).
[65] [65] K. Zheng, M. I. Setyawati, T. P. Lim, D. T. Leong, J. Xie, "Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin," ACS Nano 10, 7934–7942 (2016).
[66] [66] X. Mu, H. He, J. Wang, W. Long, Q. Li, H. Liu, Y. Gao, L. Ouyang, Q. Ren, S. Sun, J. Wang, J. Yang, Q. Liu, Y. Sun, C. Liu, X.-D. Zhang, W. Hu, "Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic brain injury," Nano Lett. 19, 4527–4534 (2019).
[67] [67] X. Mu, J. Wang, Y. Li, F. Xu, W. Long, L. Ouyang, H. Liu, Y. Jing, J. Wang, H. Dai, Q. Liu, Y. Sun, C. Liu, X.-D. Zhang, "Redox trimetallic nanozyme with neutral environment preference for brain injury," ACS Nano 13, 1870–1884 (2019).
[68] [68] R. Yan, S. Sun, J. Yang, W. Long, J. Wang, X. Mu, Q. Li, W. Hao, S. Zhang, H. Liu, Y. Gao, L. Ouyang, J. Chen, S. Liu, X.-D. Zhang, D. Ming, "Nanozymebased bandage with single-atom catalysis for brain trauma," ACS Nano 13, 11552–11560 (2019).
Get Citation
Copy Citation Text
Junchi Chen, Lingfang Liu, Haile Liu, Yonghui Li, Junying Wang, Xiaoyu Mu, Fujuan Xu, Tianyu Liu, Xiao-Dong Zhang. Ultrabright bimetallic AuAg complex: From luminescence mechanism to biological application[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041001
Received: Feb. 18, 2020
Accepted: Apr. 10, 2020
Published Online: Oct. 29, 2020
The Author Email: