Chinese Journal of Lasers, Volume. 47, Issue 1, 0100002(2020)

Research Progress on Near-Infrared High-Power Laser Damage of Liquid Crystal Optical Devices

Xiaofeng Liu1,2,3, Liping Peng2,3,4, Yuanan Zhao2,3,5、*, Xi Wang1, Dawei Li2,3, and Jianda Shao2,3、**
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology,Hefei, Anhui 230037, China
  • 2Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,Shanghai 201800, China
  • 3Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • 5State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • show less
    References(64)

    [1] Heebner J, Borden M, Miller P et al. Programmable beam spatial shaping system for the national ignition facility[J]. Proceedings of SPIE, 7916, 79160H(2011).

    [2] Huang D J, Fan W, Cheng H et al. Wavefront control of laser beam using optically addressed liquid crystal modulator[J]. High Power Laser Science and Engineering, 6, e20(2018).

    [3] Beeckman J, Neyts K. Vanbrabant P J M. Liquid-crystal photonic applications[J]. Optical Engineering, 50, 081202(2011).

    [4] Jacobs S D, Cerqua K A, Marshall K L et al. Liquid-crystal laser optics: design, fabrication, and performance[J]. Journal of the Optical Society of America B, 5, 1962-1979(1988).

    [5] Chapin S C, Germain V, Dufresne E R. Automated trapping, assembly, and sorting with holographic optical tweezers[J]. Optics Express, 14, 13095-13100(2006).

    [6] Sinclair G, Jordan P, Courtial J et al. Assembly of 3-dimensional structures using programmable holographic optical tweezers[J]. Optics Express, 12, 5475-5480(2004).

    [9] Resler D P, Hobbs D S, Sharp R C et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics Letters, 21, 689-691(1996).

    [12] Wu S T. Molecular design strategies for high birefringence liquid crystals[J]. MRS Proceedings, 709, 219-228(2002).

    [13] Wu S T. Birefringence dispersions of liquid crystals[J]. Physical Review A, 33, 1270-1274(1986).

    [14] Korenic E M, Jacobs S D, Houghton J K et al. Nematic polymer liquid-crystal wave plate for high-power lasers at 1054 nm[J]. Applied Optics, 33, 1889-1899(1994).

    [15] Kosc T Z, Owens A R, Rigatti A L et al. Long-term performance of liquid crystal optics on large fusion lasers. [C]∥CLEO: 2013, June 9-14, 2013, San Jose, CA, USA. Washington, D.C.: OSA, CTu2D, 3(2013).

    [17] Buck J, Serati S, Hosting L et al. Polarization gratings for non-mechanical beam steering applications[J]. Proceedings of SPIE, 8395, 83950F(2012).

    [18] Andrienko D, Kurioz Y, Nishikawa M et al. Control of the anchoring energy of rubbed polyimide layers by irradiation with depolarized UV-light[J]. Japanese Journal of Applied Physics, 39, 1217-1220(2000).

    [19] Xiao W B. Research on beam steering control based on liquid crystal optical phased array[D]. Chengdu: Institute of Optics and Electronics Chinese Academy Science, 11-12(2013).

    [20] Davis S R, Farca G, Rommel S D et al. Analog, non-mechanical beam-steerer with 80 degree field of regard[J]. Proceedings of SPIE, 6971, 69710G(2008).

    [21] Ma S J. Investigation of the modulation characteristics and applications of the liquid crystal spatial light modulator[D]. Beijing: Beijing University of Technology, 13(2014).

    [25] Vladimirov F L, Pletneva N I, Morichev I E et al. Liquid crystal modulators with improved laser damage resistance[J]. Proceedings of SPIE, 3682, 176-182(1998).

    [26] Raszewski Z, Piecek W, Jaroszewicz L et al. Laser damage resistant nematic liquid crystal cell[J]. Journal of Applied Physics, 114, 053104(2013).

    [27] Marshall K L, Saulnier D, Xianyu H Q et al. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications[J]. Proceedings of SPIE, 8828, 88280N(2013).

    [28] Watson E A, Whitaker B, Harris S. Initial high-power-CW-laser testing of liquid-crystal optical phased arrays USA: Air Force Research Lab Sensors Directorate Wright-[R]. Patterson AFB Sensors Directorate(2005).

    [29] Wang H F, Huang Z M, Zhang D Y et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 110, 113111(2011).

    [30] Kim H, Horwitz J S, Kushto G et al. Effect of film thickness on the properties of indium tin oxide thin films[J]. Journal of Applied Physics, 88, 6021-6025(2000).

    [31] Tuna O, Selamet Y, Aygun G et al. High quality ITO thin films grown by DC and RF sputtering without oxygen[J]. Journal of Physics D: Applied Physics, 43, 055402(2010).

    [32] Yoo J H, Menor M G, Adams J J et al. Laser damage mechanisms in conductive widegap semiconductor films[J]. Optics Express, 24, 17616-17634(2016).

    [33] Yoo J H, Matthews M, Ramsey P et al. Thermally ruggedized ITO transparent electrode films for high power optoelectronics[J]. Optics Express, 25, 25533-25545(2017).

    [34] Elhadj S, Yoo J H, Negres R A et al. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling[J]. Optical Materials Express, 7, 202-212(2017).

    [35] Liu X F, Peng L P, Gao Y Q et al. Laser damage characteristics of indium-tin-oxide film and polyimide film[J]. Infrared Physics & Technology, 99, 80-85(2019).

    [36] Xiao S Z, Gurevich E L, Ostendorf A. Incubation effect and its influence on laser patterning of ITO thin film[J]. Applied Physics A, 107, 333-338(2012).

    [37] Yoo J H, Lange A, Bude J et al. Optical and electrical properties of indium tin oxide films near their laser damage threshold[J]. Optical Materials Express, 7, 817-826(2017).

    [38] Peng L P, Zhao Y A, Liu X F et al. Quasi-CW laser-induced damage of indium tin oxide films and polyimide films at 1064 nm wavelength[J]. Proceedings of SPIE, 10713, 10713M(2018).

    [39] Li Y L. Laser damage on functional films of liquid crystal optical elements[D]. Mianyang: Institute of Fluid Physics China Academy of Engineering Physics, 18-19(2010).

    [40] Bai X. Effect of polyimide alignment film manufacturing conditions on the pretilt angle of liquid crystal[D]. Chengdu: Sichuan University, 12-13(2007).

    [41] Haq B S, Khan H U, Alam K et al. Femtosecond pulsed laser ablation of polyimide at oblique angles for medical applications[J]. Applied Optics, 54, 7413-7418(2015).

    [42] Adhi K P, Owings R L, Railkar T A et al. Chemical modifications in femtosecond ultraviolet (248 nm) excimer laser radiation-processed polyimide[J]. Applied Surface Science, 225, 324-331(2004).

    [43] Lin C J, Hong G T, Pan R P. Alignment control of rubbed polyimide layers by UV-irradiation[J]. Molecular Crystals and Liquid Crystals, 512, 91-99(2009).

    [44] Du Q F, Chen T, Liu J G et al. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser[J]. Applied Surface Science, 434, 588-595(2018).

    [45] Dyer P E, Pervolaraki M, Lippert T. Experimental studies and thermal modelling of 1064- and 532-nm Nd∶YVO4 micro-laser ablation of polyimide[J]. Applied Physics A, 80, 529-536(2005).

    [46] Peng L P, Zhao Y A, Liu X F et al. High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength[J]. Optical Materials Express, 9, 911-922(2019).

    [47] Marshall K L, Gan J, Mitchell G et al. Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications[J]. Proceedings of SPIE, 7050, 70500L(2008).

    [48] Marshall K L, Dorrer C, Vargas M et al. Photo-aligned liquid crystal devices for high-peak-power laser applications[J]. Proceedings of SPIE, 8475, 84750U(2012).

    [49] Dorrer C. Wei S K H, Leung P, et al. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices[J]. Optics Letters, 36, 4035-4037(2011).

    [50] Arakelyan S M, Lyakhov G A, Chilingaryan Y S. Nonlinear optics of liquid crystals[J]. Soviet Physics Uspekhi, 23, 245-268(1980).

    [51] Khoo I C, Shen Y R. Liquid crystals: nonlinear optical properties and processes[J]. Optical Engineering, 24, 579-585(1985).

    [52] Jánossy I, Kósa T. Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals[J]. Optics Letters, 17, 1183-1185(1992).

    [53] Lukishova S G. Nonlinear optical response of cyanobiphenyl liquid crystals to high-power, nanosecond laser radiation[J]. Journal of Nonlinear Optical Physics & Materials, 9, 365-411(2000).

    [54] Soileau M J, van Stryland E W, Guha S et al. Nonlinear optical properties of liquid crystals in the isotropic phase[J]. Molecular Crystals and Liquid Crystals, 143, 139-143(1987).

    [56] Lukishova S G, Lebedev K S, Magulariya E A et al. Reflective nonlinearity of nonabsorbing cholesteric liquid crystal mirrors driven by pulsed high-repetition-rate laser radiation[J]. Proceedings of SPIE, 3800, 164-172(1999).

    [57] Kosc T Z, Marshall K L, Kozlov A A et al. Damage testing of nematic liquid crystalline materials for femtosecond to nanosecond pulse lengths at 1053 nm[J]. Proceedings of SPIE, 10447, 104471G(2017).

    [58] di Pietro V M, Jullien A, Bortolozzo U et al. Thermally-induced nonlinear spatial shaping of infrared femtosecond pulses in nematic liquid crystals[J]. Laser Physics Letters, 16, 015301(2019).

    [59] Kuzhelev A S, Dudelzak A E. Thermally induced holographic gratings in liquid crystals at telecommunications wavelengths[J]. Journal of Optics A: Pure and Applied Optics, 5, L5-L8(2003).

    [60] Cao Z L, Mu Q Q, Hu L F et al. The durability of a liquid crystal modulator for use with a high power laser[J]. Journal of Optics A: Pure and Applied Optics, 9, 427-430(2007).

    [61] Zhu G, Whitehead D, Perrie W et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications[J]. Journal of Physics D: Applied Physics, 51, 095603(2018).

    [62] He X X, Wang X R, Wu L et al. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering[J]. Optics Communications, 382, 437-443(2017).

    [63] Zhou Z Q, Wang X R, Zhuo R S et al. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter[J]. Applied Physics B, 124, 35(2018).

    [64] Zhou Z Q. Research on tolerance high laser power of liquid crystal optical phased array devices[D]. Chengdu:University of Electronic Science and Technology of China, 61-63(2015).

    [65] Gu D, Wen B, Mahajan M et al. High power liquid crystal spatial light modulators[J]. Proceedings of SPIE, 6306, 630602(2006).

    Tools

    Get Citation

    Copy Citation Text

    Xiaofeng Liu, Liping Peng, Yuanan Zhao, Xi Wang, Dawei Li, Jianda Shao. Research Progress on Near-Infrared High-Power Laser Damage of Liquid Crystal Optical Devices[J]. Chinese Journal of Lasers, 2020, 47(1): 0100002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jun. 18, 2019

    Accepted: Oct. 9, 2019

    Published Online: Jan. 9, 2020

    The Author Email: Yuanan Zhao (yazhao@siom.ac.cn), Jianda Shao (jdshao@mail.shcnc.ac.cn)

    DOI:10.3788/CJL202047.0100002

    Topics