Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 4, 543(2024)

Lane detection algorithm based on ARM embedded platform

Tiantian GUAN and Fan YANG*
Author Affiliations
  • College of Electronic Information Engineering,Hebei University of Technology,Tianjin 300401,China
  • show less
    Figures & Tables(23)
    Framework of lane detection system
    Structure diagram of deep hybrid neural network model
    Diagram of the U-Segnet network structure
    Diagram of SE module structure
    Diagram of SE module distribution
    Flow chart of Kalman lane detection and tracking
    Model transformation process
    Actual application scenarios of Nvidia SUB development board
    Tracking effect of Kalman filter
    Lane line detection results for heavily shaded road scene in ARM platform
    Lane line detection results for rainy day scenario in ARM platform
    Lane line detection results for curved road scene in the ARM platform
    Lane line detection results for the scene of vehicle in front occlusion in ARM platform
    Lane line detection results for the scene with road signs on the ground
    Lane line detection results for the scene of ground contamination
    Lane line detection results for lane line fading scene
    Lane detection results at night in ARM platform
    • Table 1. U-Segnet network coding structure

      View table
      View in Article

      Table 1. U-Segnet network coding structure

      类型滤波器卷积核大小输出
      输入128×256×3
      卷积643×3128×256
      卷积643×3128×256
      池化
      卷积1283×364×128
      卷积1283×364×128
      池化
      卷积2563×332×64
      卷积2563×332×64
      卷积2563×332×64
    • Table 2. Structure of Tusimple# data set

      View table
      View in Article

      Table 2. Structure of Tusimple# data set

      数据集包含被标记帧序号被标记总帧数
      TrainTusimple13th and 20th7 252
      Ours13th and 20th2 296
      TestTestset #113th and 20th540
      Testset #2all frames728
    • Table 3. Ablation results

      View table
      View in Article

      Table 3. Ablation results

      实验U-Segnet算法模块SE模块F1分数
      实验1--0.72
      实验2-0.80
      实验3-0.73
      实验40.85
    • Table 4. Comparison of detection accuracy of Tusimple extended data set

      View table
      View in Article

      Table 4. Comparison of detection accuracy of Tusimple extended data set

      方法准确率/%时延/s
      Segnet1092.380.050
      Unet1194.340.040
      Segnet-ConvLSTM1395.290.125
      Unet-ConvLSTM1395.670.067
      ESNet1690.080.018
      Fast-SCNN1789.340.022
      FPENet1887.650.016
      Ours98.030.017
    • Table 5. Comparison of reasoning results of different models

      View table
      View in Article

      Table 5. Comparison of reasoning results of different models

      推理模型语言单帧检测时间/sFPS
      Pytorch模型Python0.0839
      Trt模型python0.02050
    • Table 6. Lane detection results in different traffic scene

      View table
      View in Article

      Table 6. Lane detection results in different traffic scene

      场景类别选取图像帧序号车道线总帧数正确检测帧数准确率/%FPS
      117830830197.6451
      225646645697.8953
      325442439893.8754
      436459756594.5954
      522349445692.3650
      658789654190.4149
      735545639887.2645
      826059853289.0347
    Tools

    Get Citation

    Copy Citation Text

    Tiantian GUAN, Fan YANG. Lane detection algorithm based on ARM embedded platform[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(4): 543

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 13, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email: Fan YANG (15620831298@qq.com)

    DOI:10.37188/CJLCD.2023-0141

    Topics