Infrared and Laser Engineering, Volume. 51, Issue 10, 20220042(2022)
A survey of siamese networks tracking algorithm integrating detection technology
[1] [1] Laurense V A, Goh J Y, Gerdes J C. Pathtracking f autonomous vehicles at the limit of friction[C]Proceedings of the American Control Conference, 2017: 55865591.
[2] Y H Wang, H W Chai, D Y Yang. Improved KCF real-time target tracking algorithm. Journal of Huazhong University of Science and Technology, 48, 5(2020).
[3] Y Wu, J Lim, M H Yang. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1834-1848(2015).
[4] P Li, D Wang, L Wang, et al. Deep visual tracking: Review and experimental comparison. Pattern Recognition, 76, 323-338(2018).
[5] [5] Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive crelation filters[C]Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2010: 25442550.
[6] J F Henriques, R Caseiro, P Martins, et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 583-596(2015).
[7] M Danelljan, G Hager, F S Khan, et al. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1561-1575(2017).
[8] [8] Dalal N, Triggs B. Histograms of iented gradients f human detection[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2005: 886893.
[9] [9] Van De Weijer J, Sch C, Verbeek J. Learning col names from realwld images[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2007.
[10] [10] Ma C, Huang J B, Yang X, et al. Hierarchical convolutional features f visual tracking[C]Proceedings of the IEEE International Conference on Computer Vision, 2015: 30743082.
[11] [11] Danelljan M, Robinson A, Shahbaz Khan F, et al. Beyond crelation filters: Learning continuous convolution operats f visual tracking[C]European Conference on Computer Vision, 2016: 472488.
[12] H B Luo, L Y Xu, B Hui, et al. Status and prospect of target tracking based on deep learning. Infrared and Laser Engineering, 46, 0502002(2017).
[13] O Russakovsky, J Deng, H Su, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211-252(2015).
[14] [14] Bertito L, Valmadre J, Henriques J F, et al. Fullyconvolutional siamese wks f object tracking[C]Proceedings of the European Conference on Computer Vision, 2016: 850865.
[15] [15] Valmadre J, Bertito L, Henriques J, et al. Endtoend representation learning f crelation filter based tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 28052813.
[16] [16] Dai K, Wang Y, Yan X. Longterm object tracking based on siamese wk[C]IEEE International Conference on Image Processing (ICIP), 2017: 36403644.
[17] [17] Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2005: 539546.
[18] [18] Li B, Wu W, Wang Q, et al. Siamrpn++: Evolution of siamese visual tracking with very deep wks[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 42824291.
[19] [19] Zhang Z, Peng H, Fu J, et al. Ocean: Objectaware anchfree tracking[C]Proceedings of the European Conference on Computer Vision, 2020, 12366: 771787.
[20] [20] Yan B, Peng H, Wu K, et al. LightTrack: Finding lightweight neural wks f object tracking via oneshot architecture search[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2021: 1518015189.
[21] [21] Wang G, Luo C, Sun X, et al. Tracking by instance detection: A metalearning approach[C]Conference on Computer Vision Pattern Recognition, 2020: 62876296.
[22] [22] Zou Z, Shi Z, Guo Y, et al. Object detection in 20 years: A survey[DBOL]. (20190516)[20220113]. https:doi.g10.48550arXiv.1905.05055.
[23] Y F Chen, Y Wu, W Zhang. Survey of target tracking algorithm based on siamese network structure. Computer Engineering and Applications, 56, 10-18(2020).
[24] [24] Kristan M, Lukeˇ A, Drbohlav O, et al. The Eighth Visual Object Tracking VOT2020 Challenge Results[M]. Switzerl: Springer, 2020.
[25] [25] He A, Luo C, Tian X, et al. A twofold siamese wk f realtime object tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 48344843.
[26] [26] Wang Q, Teng Z, Xing J, et al. Learning attentions: residual attentional siamese wk f high perfmance online visual tracking[C]Conference on Computer Vision Pattern Recognition, 2018: 48544863.
[27] [27] Dong X, Shen J. Triplet Loss in Siamese wk f Object Tracking[M]. Switzerl: Springer, 2018: 472488.
[28] Z J Cui, J S An, T S Cui. Siamese networks tracking algorithm integrating channel-interconnection-spatial attention. Infrared and Laser Engineering, 50, 20200148(2021).
[29] [29] Li B, Yan J, Wu W, et al. High perfmance visual tracking with siamese region proposal wk[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 89718980.
[30] S Ren, K He, R Girshick, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[31] [31] Wang Q, Zhang L, Bertito L, et al. Fast online object tracking segmentation: A unifying approach[C]Conference on Computer Vision Pattern Recognition, 2019: 13281338.
[32] [32] Chen B X, Tsotsos J K. Fast visual object tracking with rotated bounding boxes[DBOL]. (20190912)[20220113]. https:doi.g10.48550arXiv.1907.03892.
[33] [33] Zhou W, Wen L, Zhang L, et al. SiamMan: Siamese motionaware wk f visual tracking[DBOL]. (20200118)[20220113]. https:doi.g10.48550arXiv.1912.05515.
[34] [34] Liao B, Wang C, Wang Y, et al. Pg: Pixel to global matching wk f visual tracking[C]European Conference on Computer Vision, 2020: 429444.
[35] [35] Zhu Z, Wang Q, Li B, et al. Distractaware siamese wks f visual object tracking[C]Proceedings of the European Conference on Computer Vision, 2018: 101117.
[36] [36] He K, Zhang X, Ren S, et al. Deep residual learning f image recognition[C]Conference on Computer Vision Pattern Recognition, 2016: 770778.
[37] [37] Zhang Z, Peng H. Deeper wider siamese wks f realtime visual tracking[C]Conference on Computer Vision Pattern Recognition, 2019: 45864595.
[38] [38] Li B, Wu W, Wang Q, et al. Siamrpn++: Evolution of siamese visual tracking with very deep wks[C]Conference on Computer Vision Pattern Recognition, 2019: 42824291.
[39] [39] Lin T Y, Dollár P, Girshick R, et al. Feature pyra wks f object detection[C]Conference on Computer Vision Pattern Recognition, 2017: 936944.
[40] [40] Guo D, Wang J, Cui Y, et al. SiamCAR: siamese fully convolutional classification regression f visual tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 62686276.
[41] [41] Xu Y, Wang Z, Li Z, et al. SiamFC++: Towards robust accurate visual tracking with target estimation guidelines[C]Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 1254912556.
[42] [42] Tian Z, Shen C, Chen H, et al. FCOS: Fully convolutional onestage object detection[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 96279636.
[43] [43] Chen Z, Zhong B, Li G, et al. Siamese box adaptive wk f visual tracking[C]Proceedings of the IEEE Computer Society Conference on Computer Vision Pattern Recognition, 2020: 66676676.
[44] Z Zhang, Y Liu, B Li, et al. Toward accurate pixelwise object tracking via attention retrieval. IEEE Transactions on Image Processing, 30, 8553-8566(2021).
[45] [45] Cui Y, Jiang C, Wang L, et al. Fully convolutional online tracking[DBOL]. (20210926)[20220113]. https:doi.g10.48550arXiv.2004.07109.
[46] [46] Zhou X, Wang D, Krähenbühl P. Objects as points[DBOL]. (20190429)[20220113]. https:doi.g10.48550arXiv.1904.07850.
[47] [47] Law H, Deng J. Cner: Detecting objects as paired keypoints[C]Proceedings of the European Conference on Computer Vision, 2018: 765781.
[48] P Gao, R Yuan, F Wang, et al. Siamese attentional keypoint network for high performance visual tracking. Knowledge-based Systems, 193, 105448(2020).
[49] [49] Peng S, Wang K, Yu Y, et al. Accurate anch free tracking[DBOL]. (20200613)[20220113]. https:doi.g10.48550arXiv.2006.07560.
[50] [50] Du F, Liu P, Zhao W, et al. Crelationguided attention f cner detection based visual tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 68356844.
[51] [51] Yan B, Zhang X, Wang D, et al. Alpharefine: Boosting tracking perfmance by precise bounding box estimation[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2021: 52895298.
[52] [52] Ma Z, Wang L, Zhang H, et al. Rpt: Learning point set representation f siamese visual tracking[C]European Conference on Computer Vision, 2020: 653665.
[53] [53] Yang Z, Liu S, Hu H, et al. Reppoints: Point set representation f object detection[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 96579666.
[54] [54] Sauer A, Aljalbout E, Haddadin S. Tracking holistic object representations[DBOL]. (20190806)[20220113]. https:doi.g10.48550arXiv.1907.12920.
[55] [55] Yu Y, Xiong Y, Huang W, et al. Defmable siamese attention wks f visual object tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 67276736.
[56] [56] Xu T, Feng Z H, Wu X J, et al. AFAT: Adaptive failureaware tracker f robust visual object tracking[DBOL]. (20200527)[20220113]. https:doi.g10.48550arXiv.2005.13708.
[57] [57] Zhang L, GonzalezGarcia A, van de Weijer J, et al. Learning the model update f siamese trackers[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 40094018.
[58] [58] Zhou J, Wang P, Sun H. Discriminative robust online learning f siamese visual tracking[C]Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 1301713024.
[59] [59] Wang G, Luo C, Xiong Z, et al. Spmtracker: Seriesparallel matching f realtime visual object tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 36433652.
[60] [60] Sung F, Yang Y, Zhang L, et al. Learning to compare: Relation wk f fewshot learning[C]Proceedings of the IEEE conference on computer vision pattern recognition, 2018: 11991208.
[61] [61] Yan B, Zhao H, Wang D, et al. “Skimmingperusal” tracking: A framewk f realtime robust longterm tracking[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 23852393.
[62] H W Zhang, X X Li, B Zhu, et al. Two-stage object tracking method based on siamese neural network. Infrared and Laser Engineering, 50, 20200491(2021).
[63] [63] Fan H, Ling H. Siamese caded region proposal wks f realtime visual tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 79527961.
[64] [64] Li Q, Qin Z, Zhang W, et al. Siamese keypoint prediction wk f visual object tracking[DBOL]. (20200607)[20220113]. https:doi.g10.48550arXiv.2006.04078.
[65] [65] Bhat G, Danelljan M, Van Gool L, et al. Learning discriminative model prediction f tracking[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 61816190.
[66] [66] Danelljan M, van Gool L, Timofte R. Probabilistic regression f visual tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 71817190.
[67] [67] Choi J, Kwon J, Lee K M. Visual Tracking by Tridentalign Context Embedding[M]. Switzerl: Springer, 2020: 504520.
[68] [68] Huang L, Zhao X, Huang K. Globaltrack: A simple strong baseline f longterm tracking[C]Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 1103711044.
[69] [69] Voigtlaender P, Luiten J, Tr P H S, et al. Siam RCNN: Visual tracking by redetection[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 65776587.
[70] [70] Dave A, Tokmakov P, Sch C, et al. Learning to track any object[DBOL]. (20191025)[20220113]. https:doi.g10.48550arXiv.1910.11844.
[71] [71] Huang L, Zhao X, Huang K. Bridging the gap between detection tracking: A unified approach[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 39984008.
[72] [72] Danelljan M, Bhat G, Khan F S, et al. ATOM: Accurate tracking by overlap maximization[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 46554664.
[73] [73] Jiang B, Luo R, Mao J, et al. Acquisition of localization confidence f accurate object detection[C]Proceedings of the European Conference on Computer Vision, 2018.
[74] [74] Finn C, Abbeel P, Levine S. Modelagnostic metalearning f fast adaptation of deep wks[C]International Conference on Machine Learning, 2017: 11261135.
[75] [75] Antoniou A, Edwards H, Stkey A. How to train your maml[C]International Conference on Learning Representations, 2019.
[76] [76] Li Z, Zhou F, Chen F, et al. MetaSGD: Learning to learn quickly f fewshot learning[DBOL].(20170928)[20220113]. https:doi.g10.48550arXiv.1707.09835.
[77] [77] Kristan M, Leonardis A, Matas J, et al. The Sixth Visual Object Tracking VOT2018 Challenge Results[M]. Switzerl: Springer, 2018: 353.
[78] L Huang, X Zhao, K Huang. Got-10 k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1562-1577(2019).
[79] [79] Fan H, Lin L, Yang F, et al. Lasot: A highquality benchmark f largescale single object tracking[C]Conference on Computer Vision Pattern Recognition, 2019: 53745383.
[80] G Han, H Du, J Liu, et al. Fully conventional anchor-free siamese networks for object tracking. IEEE Access, 7, 123934-123943(2019).
[81] [81] Danelljan M, Gool L Van, Timofte R. Probabilistic regression f visual tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 71817190.
[82] [82] Choi J, Chun D, Kim H, et al. Gaussian yolov3: An accurate fast object detect using localization uncertainty f autonomous driving[C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 502511.
[83] [83] He Y, Zhu C, Wang J, et al. Bounding box regression with uncertainty f accurate object detection[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 28882897.
[84] [84] Zhu B, Wang J, Jiang Z, et al. Autoassign: Differentiable label assignment f dense object detection[DBOL]. (20201125)[20220113]. https:doi.g10.48550arXiv.2007.03496.
[85] [85] Li X, Wang W, Wu L, et al. Generalized focal loss: Learning qualified distributed bounding boxes f dense object detection[C]Advances in Neural Infmation Processing Systems, 2020.
[86] K Oksuz, B C Cam, S Kalkan, et al. Imbalance problems in object detection: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3388-3415(2020).
[87] [87] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]Advances in Neural Infmation Processing Systems, 2017: 59986008.
[88] [88] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is wth 16 x16 wds: Transfmers f image recognition at scale[C]International Conference on Learning Representations, 2021.
[89] [89] Chen X, Yan B, Zhu J, et al. Transfmer tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2021: 81268135.
[90] [90] Yan B, Peng H, Fu J, et al. Learning spatiotempal transfmer f visual tracking[C]Proceedings of the IEEE International Conference on Computer Vision, 2021: 1044810457.
[91] [91] Wang N, Zhou W, Wang J, et al. Transfmer meets tracker: Exploiting tempal context f robust visual tracking[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2021: 15711580.
[92] [92] Lin L, Fan H, Xu Y, et al. SwinTrack: A simple strong baseline f transfmer tracking[DBOL]. (20211208)[20220113]. https:doi.g10.48550arXiv.2112.00995.
Get Citation
Copy Citation Text
Jinpu Zhang, Yuehuan Wang. A survey of siamese networks tracking algorithm integrating detection technology[J]. Infrared and Laser Engineering, 2022, 51(10): 20220042
Category: Image processing
Received: Jan. 13, 2022
Accepted: --
Published Online: Jan. 6, 2023
The Author Email: