Acta Photonica Sinica, Volume. 52, Issue 9, 0914001(2023)
Research Progress of Tunable Mid-infrared Solid State Laser Pumped by Near-infrared Laser(Invited)
[1] REN Guoguang, HUANG Yunian. Laser-based IRCM system defences for military and commercial aircraft[J]. Laser & Infrared, 36, 1-6(2006).
[2] CHU Xuelian, QIU Zhenan, ZHANG Yuansheng et al. Experimental research of infrared detecting system disturbed by mid-wave infrared laser[J]. Infrared Technology, 33, 440-442(2011).
[3] SIGRIST M W. Mid-infrared laser-spectroscopic sensing of chemical species[J]. Journal of Advanced Research, 6, 529-533(2015).
[4] SHEN Yu, ZONG Nan, WEN Ya et al. Review on novel 6.45 μm laser scalpel, the medical applications and laser sources (invited)[J]. Electro-Optic Technology Application, 37, 10-18(2022).
[5] DE BRUYNE S, SPEECKAERT M M, DELANGHE J R. Applications of mid-infrared spectroscopy in the clinical laboratory setting[J]. Critical Reviews in Clinical Laboratory Sciences, 55, 1-20(2017).
[6] BENSAID S, KACHENOURA A, COSTET N et al. Noninvasive detection of bladder cancer using mid-infrared spectra classification[J]. Expert Systems with Applications, 89, 333-342(2017).
[7] YANG F, YAO J, XU H et al. Midinfrared optical parametric amplifier with 6.4-11 μm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 27, 1100-1103(2015).
[8] CHEN W, POULLET E, BURIE J et al. Widely tunable continuous-wave mid-infrared radiation (5.5-11 μm) by difference-frequency generation in LiInS2 crystal[J]. Applied Optics, 44, 4123-4129(2005).
[9] EHRET S, SCHNEIDER H. Generation of subpicosecond infrared pulses tunable between 5.2 µm and 18 µm at a repetition rate of 76 MHz[J]. Applied Physics B-Lasers and Optics, 66, 27-30(1998).
[10] SHI W, DING Y J. A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications[J]. Applied Physics Letters, 84, 1635-1637(2004).
[11] QIAN C, YAO B, ZHAO B et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 44, 715-718(2019).
[12] HAAKESTAD M W, FONNUM H, LIPPERT E. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2[J]. Optics Express, 22, 8556-8564(2014).
[13] GUO B, XIAO Q, WANG S et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications[J]. Laser & Photonics Reviews, 13, 1800327(2019).
[14] GOLDENSTEIN C S, SPEARRIN R M, JEFFRIES J B et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science, 60, 132-176(2016).
[15] ZHANG Huailin, WU Tao, HE Xingdao. Progress of measurement of infrared absorption spectroscopy based on QCL[J]. Spectroscopy and Spectral Analysis, 39, 2751-2757(2019).
[16] PHILLIPS M C, HÔ N. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array[J]. Optics Express, 16, 1836-1845(2008).
[17] HAASE K, KRÖGER-LUI N, PUCCI A et al. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array[J]. Journal of Biophotonics, 9, 61-66(2015).
[18] DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N[M]. Handbook of nonlinear optical crystals(1999).
[19] BAUDISCH M, HEMMER M, PIRES H et al. Performance of MgO:PPLN, KTA, and KNbO3 for mid-wave infrared broadband parametric amplification at high average power[J]. Optics Letters, 39, 5802-5805(2014).
[20] ISAENKO L I, YELISSEYEV A P. Recent studies of nonlinear chalcogenide crystals for the mid-IR[J]. Semiconductor Science and Technology, 31, 123001(2016).
[21] SKAULI T, VODOPYANOV K L, PINGUET T J et al. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation[J]. Optics Letters, 27, 628-630(2002).
[22] KIELECK C, EICHHORN M, HIRTH A et al. High-efficiency 20-50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser[J]. Optics Letters, 34, 262-264(2009).
[23] NI Y, WU H, MAO M et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 8, 1796-1805(2018).
[24] GUO Y, ZHOU Y, LIN X et al. Growth and characterizations of BaGa4S7 crystal[J]. Optical Materials, 36, 2007-2011(2014).
[25] YAO J, YIN W, FENG K et al. Growth and characterization of BaGa4Se7 crystal[J]. Journal of Crystal Growth, 346, 1-4(2012).
[26] ZHAO X, LI C, BAI J et al. Recalibration of the nonlinear optical coefficients of BaGa4Se7 crystal using second-harmonic-generation method[J]. Optics Letters, 46, 5894-5897(2021).
[27] KUMAR S C, SCHUNEMANN P G, ZAWILSKI K T et al. Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2[J]. Journal of the Optical Society of America B-Optical Physics, 33, D44-D56(2016).
[28] POMERANZA L A, SCHUNEMANNA P G, MAGARRELLA D J et al. 1 μm-pumped OPO based on orientation-patterned GaP[C], 9347, 93470K(2015).
[29] SCHUNEMANN P G, POMERANZ L A, MAGARRELL D J. First OPO based on orientation-patterned gallium phosphide (OP-GaP)[C], SW3O.1(2015).
[30] VODOPYANOV K L, MAFFETONE J P, ZWIEBACK I et al. AgGaS2 optical parametric oscillator continuously tunable from 3.9 to 11.3 μm[J]. Applied Physics Letters, 75, 1204-1206(1999).
[31] WANG T, KANG Z, ZHANG H et al. Wide-tunable, high-energy AgGaS2 optical parametric oscillator[J]. Optics Express, 14, 13001-13006(2006).
[32] ROTERMUND F, PETROV V, NOACK F. Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2[J]. Optics Communications, 185, 177-183(2000).
[33] KOROGU A O, MIROV S B, LEE W et al. Tunable middle infrared downconversion in GaSe and AgGaS2[J]. Optics Communications, 155, 307-312(1998).
[34] WANG L, CAO Z, WANG H et al. A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2[J]. Optics Communications, 284, 358-362(2011).
[35] PETROV V, REMPEL C, STOLBERG K et al. Widely tunable continuous-wave mid-infrared laser source based on difference-frequency generation in AgGaS2[J]. Applied Optics, 37, 4925-4928(1998).
[36] MIGAL E A, POTEMKIN F V, GORDIENKO V M. Highly efficient optical parametric amplifier tunable from near-to mid-IR for driving extreme nonlinear optics in solids[J]. Optics Letters, 42, 5218-5221(2017).
[37] ROTERMUND F, PETROV V. Mid-infrared femtosecond optical parametric generator pumped by a Cr:forsterite regenerative amplifier at 1.25 µm[J]. Applied Physics B-Lasers and Optics, 70, 731-732(2000).
[38] GOLUBOVIC B, REED M K. All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2[J]. Optics Letters, 23, 1760-1762(1998).
[39] MCEWAN K J. High-power synchronously pumped AgGaS2 optical parametric oscillator[J]. Optics Letters, 23, 667-669(1998).
[40] YANG Chunhui, MA Tianhui, ZHU Chongqiang et al. Nonlinear crystals GaSe in mid, far-infrared and terahertz range[J]. Journal of the Chinese Ceramic Society, 45, 1402-1409(2017).
[41] LIU Y, ZHAO J, WEI Z et al. High-power, high-repetition-rate tunable longwave mid-IR sources based on DFG in the OPA regime[J]. Optics Letters, 48, 1052-1055(2023).
[42] MÖRZ F, STEINLE T, LINNENBANK H et al. Alignment-free difference frequency light source tunable from 5 to 20 µm by mixing two independently tunable OPOs[J]. Optics Express, 28, 11883-11891(2020).
[43] GAIDA C, GEBHARDT M, HEUERMANN T et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 7, 94(2018).
[44] FINSTERBUSCH K, BAYER A, Tunable ZACHARIAS H.. narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B-Lasers and Optics, 79, 457-462(2004).
[45] HSU Y, CHEN C, HUANG J Y et al. Erbium doped GaSe crystal for mid-IR applications[J]. Optics Express, 14, 5484-5491(2006).
[46] YAO J, MEI D, BAI L et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 49, 9212-9216(2010).
[47] BADIKOV V, BADIKOV D, SHEVYRDYAEVA G et al. Phase-matching properties of BaGa4S7 and BaGa4Se7: Wide-bandgap nonlinear crystals for the mid-infrared[J]. Physica Status Solidi-Rapid Research Letters, 5, 31-33(2011).
[48] LI C, LI Z, SUN M et al. High-pressure synthesis, growth and characterization of large-size BaGa4Se7 crystals[J]. Journal of Crystal Growth, 577, 126405(2022).
[49] LIN X, ZHANG G, YE N. Growth and characterization of BaGa4S7: a new crystal for Mid-IR nonlinear optics[J]. Crystal Growth & Design, 9, 1186-1189(2009).
[50] MENG Xianghe, LI Zhuang, YAO Jiyong. Property and application of new infrared nonlinear optical crystal BaGa4Se7[J]. Chinese Journal of Lasers, 49, 0101005(2022).
[51] YIN W, FENG K, HE R et al. BaGa2MQ6 (M=Si, Ge; Q=S, Se): a new series of promising IR nonlinear optical materials[J]. Dalton Transactions, 41, 5653-5661(2012).
[52] TYAZHEV A, KOLKE D, MARCHEV G et al. Midinfrared optical parametric oscillator based on the wide-bandgap BaGa4S7 nonlinear crystal[J]. Optics Letters, 37, 4146-4148(2012).
[53] YANG F, YAO J, XU H et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal[J]. Optics Letters, 38, 3903-3905(2013).
[54] KOSTYUKOVA N Y, BOYKO A A, BADIKOV V et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 41, 3667-3670(2016).
[55] HE Y, XU D, YAO J et al. Intracavity-pumped, mid-infrared tandem optical parametric oscillator based on BaGa4Se7 crystal[J]. IEEE Photonics Journal, 11, 1300109(2019).
[56] YANG F, YAO J, GUO Y et al. High-energy continuously tunable 8-14 μm picosecond coherent radiation generation from BGSe-OPA pumped by 1 064 nm laser[J]. Optics and Laser Technology, 125, 106040(2020).
[57] HE Y, GUO Y, XU D et al. High energy and tunable mid-infrared source based on BaGa4Se7 crystal by single-pass difference-frequency generation[J]. Optics Express, 27, 9241-9249(2019).
[59] XU D, ZHANG J, HE Y et al. High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal[J]. Optics Letters, 45, 5287-5290(2020).
[60] WU B, ZHANG Y, ZUO Y et al. High energy mid-infrared laser pulse output from a BaGa4Se7crystal-based optical parametric oscillator[J]. Optics Letters, 45, 4595-4598(2020).
[61] SUN M, CAO Z, YAO J et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Optics Express, 27, 4014-4023(2019).
[62] KANG M, DENG Y, YAO J et al. High power and efficient 4.43 µm BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Photonics, 9, 105(2022).
[63] HE Y, YAN C, CHEN K et al. High repetition rate, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 1 µm Nd:YAG laser[J]. Applied Science, 12, 7197(2022).
[64] LIU G, ZHANG Z, LI C et al. Comparison of a high-power 3.75 µm BaGa4Se7 OPO based on a plane-parallel resonator and an unstable resonator with a Gaussian reflectivity mirror[J]. Applied Optics, 61, 7330-7335(2022).
[65] YUAN J, LI C, YAO B et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser[J]. Optics Express, 24, 6083-6087(2016).
[66] YANG K, LIU G, LI C et al. Research on performance improvement technology of a BaGa4Se7 mid-infrared optical parametric oscillator[J]. Optics Letters, 45, 6418-6421(2020).
[67] ISAENKO L, YELISSEYEV A, LOBANOV S et al. Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR[J]. Crystal Research and Technology, 38, 379-387(2003).
[68] MA Tianhui, YANG Chunhui, SUN Liang et al. Synthesis and characterization of orthorhombic LiGaS2[J]. Materials Science & Technology, 20, 121-126(2012).
[69] MA T, YANG C, ZHU C et al. Preparation and structure characteristics of orthorhombic and chalcopyrite LiGaSe2[J]. Journal of the Chinese Ceramic Society, 38, 1996-2000(2010).
[70] SUN Liang, YANG Chunhui, MA Tianhui et al. Nonlinear optical crystals LiBX2 (B=Ga, In; X=S, Se, Te)[J]. Progress in Chemistry, 26, 293-302(2014).
[71] SMETANIN S N, JELÍNEK M, KUBECEK V et al. 50-µJ level, 20-picosecond, narrowband difference-frequency generation at 4.6, 5.4, 7.5, 9.2, and 10.8 µm in LiGaS2 and LiGaSe2 at Nd:YAG laser pumping and various crystalline Raman laser seedings[J]. Optical Materials Express, 10, 1881-1890(2020).
[72] PETROV V, YELISSEYEV A, ISAENKO L et al. Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2[J]. Applied Physics B-Lasers and Optics, 78, 543-546(2004).
[73] TYAZHEV A, VEDENYAPIN V, MARCHEV G et al. Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2[J]. Optical Materials, 35, 1612-1615(2013).
[74] VEDENYAPIN V, BOYKO A, KOLKER D et al. LiGaSe2 optical parametric oscillator pumped by a Q-switched Nd:YAG laser[J]. Laser Physics Letters, 13, 115401(2016).
[75] PENWELL S B, WHALEY-MAYDA L, TOKMAKOFF A. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source[J]. Optics Letters, 43, 1363-1366(2018).
[76] HEINER Z, WANG L, PETROV V et al. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1 750 cm-1 spectral range utilizing a LiGaS2 optical parametric amplifier[J]. Optics Express, 27, 15289-15297(2019).
[77] BOURNET Q, GUICHARD F, NATILE M et al. Enhanced intrapulse difference frequency generation in the mid-infrared by a spectrally dependent polarization state[J]. Optics Letters, 47, 261-264(2022).
[78] BOURNET Q, JONUSAS M, ZHENG A et al. Inline amplification of mid-infrared intrapulse difference frequency generation[J]. Optis Letters, 47, 4885-4888(2022).
[79] PUPEZA I, HUBER M, TRUBETSKOV M et al. Field-resolved infrared spectroscopy of biological systems[J]. Nature, 577, 52-59(2020).
[80] ISAENKO L, VASILYEVA I, YELISSEYEV A et al. Growth and characterization of LiInS2 single crystals[J]. Journal of Crystal Growth, 218, 313-322(2000).
[81] WANG Shanpeng, TAO Xutang, DONG Chunming et al. Synthesis and properties of LiInS2 polycrystalline materials[J]. Journal of Synthetic Crystals, 35, 1167-1171(2006).
[82] WANG S, GAO Z, ZHANG X et al. Crystal growth and effects of annealing on optical and electrical properties of mid-Infrared single crystal LiInS2[J]. Crystal Growth & Design, 14, 5957-5961(2014).
[83] ISAENKO L, YELISSEYEV A, LOBANOV S et al. LiInSe2: A biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared[J]. Journal of Applied Physics, 91, 9475-9480(2002).
[84] WANG S, ZHANG X, ZHANG X et al. Modified Bridgman growth and properties of mid-infrared LiInSe2 crystal[J]. Journal of Crystal Growth, 401, 150-155(2014).
[85] JIA N, WANG S, GAO Z et al. Optimized growth of large-sized LiInSe2 crystals and the electric-elastic properties[J]. Crystal Growth & Design, 17, 5875-5880(2017).
[86] WANG S, MA C, SUN L et al. Optimized Bridgman growth and quality improvement of LiInSe2 crystal by annealing in Li2Se vapor atmosphere[J]. Journal of Alloys and Compounds, 904, 163991(2022).
[87] WANG S, DAI S, JIA N et al. Tunable 7-12 μm picosecond optical parametric amplifier based on a LiInSe2 mid-infrared crystal[J]. Optics Letters, 42, 2098-2101(2017).
[88] MA T, ZHU C, LEI Z et al. Growth and characterization of LiInSe2 single crystals[J]. Journal of Crystal Growth, 415, 132-138(2015).
[89] ROTERMUND F, PETROV V, ISAENKO F N L et al. Optical parametric generation of femtosecond pulses up to 9 mm with LiInS2 pumped at 800 nm[J]. Applied Physics Letters, 78, 2623-2625(2001).
[90] STOYCHEV L I, DANAILOVC M B, DEMIDOVICHC A A et al. DFG-based mid-IR laser system for muounic-hydrogen spectroscopy[C], 9135, 91350J(2014).
[91] STOYCHEV L I, CABRERA H, SUÁREZ-VARGAS J J et al. DFG-based mid-IR tunable source with 0.5 mJ energy and a 30 pm linewidth[J]. Optics Letters, 45, 5526-5529(2020).
[92] ZONDY J, VEDENYAPIN V, YELISSEYEV A et al. LiInSe2 nanosecond optical parametric oscillator[J]. Optics Letters, 30, 2460-2462(2005).
[93] MARCHEV G, TYAZHEV A, VEDENYAPIN V et al. Nd:YAG pumped nanosecond optical parametric oscillator based on LiInSe2 with tunability extending from 4.7 to 8.7 µm[J]. Optics Express, 17, 13441-13446(2009).
[94] BEUTLER M, RIMKE I, BÜTTNER E et al. Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources[J]. Optics Letters, 39, 4353-4355(2014).
[95] DAI S, JIA N, CHEN J et al. Picosecond mid-infrared optical parametric amplifier based on LiInSe2 with tenability extending from 3.6 to 4.8 μm[J]. Optics Express, 25, 12860-12866(2017).
[96] SCHUNEMANN P G, ZAWILSKI K T, POLLAK T M et al. New nonlinear optical crystal for mid-IR OPOs: CdSiP2[C], MG6(2008).
[97] ZHANG G, TAO X, RUAN H et al. Growth of CdSiP2 single crystals by self-seeding vertical Bridgman method[J]. Journal of Crystal Growth, 340, 197-201(2012).
[98] ZHANG Guodong, CHENG Kui, ZHANG Longzhen et al. Synthesis and growth of min-infrared nonlinear optical crystal CdSiP2[J]. Journal of Synthetic Crystals, 49, 1494-1498, 1504(2020).
[99] FAN L, ZHU S, ZHAO B et al. Growth of CdSiP2 single crystals by double-walled quartz ampoule technique[J]. Journal of Crystal Growth, 364, 62-66(2013).
[100] WU Shengling, ZHAO Beijun, ZHU Shifu et al. Study on growth and explosion-proof technologies of CdSiP2 single crystal[J]. Journal of Synthetic Crystals, 43, 492-496(2014).
[101] YANG Hui, ZHU Shifu, ZHAO Beijun. Study on the growth and properties of large infrared nonlinear optical crystal LiInS2[J]. Journal of Synthetic Crystals, 41, 11-14, 19(2012).
[102] PETROV V, SCHUNEMANN P G, ZAWILSKI K T et al. Noncritical singly resonant optical parametric oscillator operation near 6.2 μm based on a CdSiP2 crystal pumped at 1064 nm[J]. Optics Letters, 34, 2399-2401(2009).
[103] MARCHEV G, TYAZHEV A, PETROV V et al. Optical parametric generation in CdSiP2 at 6.125 μm pumped by 8 ns long pulses at 1064 nm[J]. Optics Letters, 37, 740-742(2012).
[104] COLE B, GOLDBERG L, NETTLETON J et al. Compact 12 mJ mid-IR pulsed source using an intracavity KTA OPO followed by a CSP OPA[C], 11259, 1125907(2020).
[105] KUMAR S C, AGNESI A, DALLOCCHIO P et al. Compact, 1.5 mJ, 450 MHz, CdSiP2 picosecond optical parametric oscillator near 6.3 μm[J]. Optics Letters, 36, 3236-3238(2011).
[106] JIA Y, HANKA K, ZAWILSKI K T et al. Continuous-wave whispering-gallery optical parametric oscillator based on CdSiP2[J]. Optics Express, 26, 10833-10841(2018).
[107] AMIUNE N, ZAWILSKI K T, SCHUNEMANN P G et al. Pump tuning of a mid-infrared whispering gallery optical parametric oscillator[J]. Optics Express, 30, 41084-41091(2022).
[108] PEREMANS A, LIS D, CECCHET F et al. Noncritical singly resonant synchronously pumped OPO for generation of picosecond pulses in the mid-infrared near 6.4 μm[J]. Optics Letters, 34, 3053-3055(2009).
[109] CHALUS O, SCHUNEMANN P G, ZAWILSKI K T et al. Optical parametric generation in CdSiP2[J]. Optics Letters, 35, 4142-4144(2010).
[110] KUMAR S C, KRAUTH J, STEINMANN A et al. High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2[J]. Optics Letters, 40, 1398-1401(2015).
[111] KUMAR S C, ESTEBAN-MARTIN A, SANTANA A et al. Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2[J]. Optics Letters, 41, 3355-3358(2016).
[112] KUMAR S C, ZAWILSKI K T, SCHUNEMANN P G et al. High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 42, 3606-3609(2017).
[113] PETROV V, MARCHEV G, SCHUNEMANN P G et al. Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm[J]. Optics Letters, 35, 1230-1232(2010).
[114] KUMAR S C, JELÍNEK M, BAUDISCH M et al. Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2[J]. Optics Express, 20, 15703-15709(2012).
[115] RAMAIAH-BADARLA V, KUMAR S C, ESTEBAN-MARTIN A et al. Ti:sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 41, 1708-1711(2016).
[116] O'DONNELL C F, KUMAR S C, ZAWILSKI K T et al. Critically phase-matched Ti:sapphire-laser pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 43, 1507-1510(2018).
[117] O'DONNELL C F, KUMAR S C, ZAWILSKI K T et al. Single-Stage Ti:Sapphire-pumped deep-infrared optical parametric oscillator based on CdSiP2[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1601409(2018).
[118] POMERANZ L, MCCARTHY J, DAY R et al. Efficient, 2-5 μm tunable CdSiP2 optical parametric oscillator pumped by a laser source at 1.57 μm[J]. Optics Letters, 43, 130-133(2018).
[119] MURRAY R T, CHANDRAN A M, BATTLE R A et al. Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 µm[J]. Optics Letters, 46, 2039-2042(2021).
[120] GUHA S, BARNES J O, SCHUNEMANN P G. Mid-wave infrared generation by difference frequency mixing of continuous wave lasers in orientation-patterned Gallium Phosphide[J]. Optics Express, 5, 2911-2923(2015).
[121] INSERO G, CLIVATI C, D'AMBROSIO D et al. Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals[J]. Optics Letters, 41, 5114-5117(2016).
[122] WEI J, KUMAR S C, YE H et al. Nanosecond difference-frequency generation in orientation-patterned gallium phosphide[J]. Optics Letters, 42, 2193-2196(2017).
[123] YE H, KUMAR S C, WEI J et al. Singly-resonant pulsed optical parametric oscillator based on orientation-patterned gallium phosphide[J]. Optics Letters, 43, 2454-2457(2018).
[124] MAIDMENT L, SCHUNEMANN P G, REID D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 41, 4261-4264(2016).
[125] O'DONNELL C F, KUMAR S C, SCHUNEMANN P G et al. Femtosecond optical parametric oscillator continuously tunable across 3.6-8 μm based on orientation-patterned gallium phosphide[J]. Optics Letters, 44, 4570-4573(2019).
[126] SCHUNEMANN P G, JOHNSON K, FARRELL C et al. Continuous wavelength tuning from 3.9-12 µm from an optical parametric oscillator based on orientation-patterned GaP grown on GaAs[J]. Optical Materials Express, 11, 654-663(2021).
[127] CASALS J C, PARSA S, KUMAR S C et al. Picosecond difference-frequency-generation in orientation-patterned gallium phosphide[J]. Optics Express, 25, 19595-19602(2017).
Get Citation
Copy Citation Text
Kai CHEN, Degang XU, Yixin HE, Kai ZHONG, Jining LI, Yuye WANG, Jianquan YAO. Research Progress of Tunable Mid-infrared Solid State Laser Pumped by Near-infrared Laser(Invited)[J]. Acta Photonica Sinica, 2023, 52(9): 0914001
Category:
Received: Jul. 17, 2023
Accepted: Aug. 14, 2023
Published Online: Oct. 24, 2023
The Author Email: Degang XU (xudegang@tju.edu.cn)