Infrared and Laser Engineering, Volume. 54, Issue 5, 20240529(2025)

Optimization design of the barrel structure for large-aperture refractive space telescopes

Zhiyu HUANG1, Junqing ZHU2, Yongxian WANG2, Weiqi HUANG1, and Yingjun GUAN1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Changchun University of Technology, Changchun 130012, China
  • 2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    Figures & Tables(19)
    Flowchart of optimization method
    Three-dimensional model of the space telescope
    Finite element model of the barrel
    Topology optimization
    Shell units
    After size optimization
    Mirror barrel structure
    Results of static analysis
    Mirror deformation and face shape cloud of large aperture lens 10
    First mode of the telescope
    Detection diagram
    Detection diagram
    • Table 1. Key material parameters

      View table
      View in Article

      Table 1. Key material parameters

      MaterialDensity/g·cm−3Young's modulus/1010 PaSpecific stiffness/107 N·mm·g−1Coefficient of thermal expansion/10−6−1Poisson's ratio
      Aluminum alloy2.87.12.5323.80.33
      Indium steel8.114.11.740.3-1.00.25
      Titanium alloy4.4410.92.459.10.34
      Magnesium alloy1.774.52.5425.20.33
    • Table 2. Parameters before and after dimensional optimization

      View table
      View in Article

      Table 2. Parameters before and after dimensional optimization

      DesignvariableInitialvalue/mmChangeregion/mmOptimizationresults/mm
      T13.53-53
      T24.53-63
      T33.23-66
      T433-64
      T54.63-53
      T6-T144.23-55
    • Table 3. Mirror index for large aperture lens 10

      View table
      View in Article

      Table 3. Mirror index for large aperture lens 10

      LoadRMS/nmPV/nm
      5 ℃2.129.35
      Gz0.100.40
      5 ℃+Gz2.219.62
    • Table 4. Three order modal parameters before and after optimization of the mirror tube

      View table
      View in Article

      Table 4. Three order modal parameters before and after optimization of the mirror tube

      ModeOptimization design/HzModal shape
      12 871Swing around X axis
      22 881Swing around Y axis
      33 014Swing around Z axis
    • Table 5. Impact stress test conditions

      View table
      View in Article

      Table 5. Impact stress test conditions

      Frequency/Hz100-800800-4000
      Shock spectral value+9 dB/oct1000g
      Duration≤20 ms
      Direction±X, ±Y, ±Z
      Number of shocks1 time in each direction
    • Table 6. Random vibration test conditions

      View table
      View in Article

      Table 6. Random vibration test conditions

      Frequency range/HzPower spectraldensityRoot-mean-square/grmsTest time
      20-100+6 dB/oct14.334 min in each direction
      100-4000.5 g2/Hz
      400-2 000−6 dB/oct
    • Table 7. Results of impact stress and random vibration analysis

      View table
      View in Article

      Table 7. Results of impact stress and random vibration analysis

      Parts\LoadMaximum stress in impact stress/MPaMaximum stress in random vibration/MPaFactor of safety>1.5
      Direction along XDirection along YDirection along ZDirection along XDirection along YDirection along Z
      Lens 12.0642.0328.6461.037×10−11.024×10−12.153×10−15.78
      Lens 22.6922.6249.8551.394×10−11.374×10−12.445×10−15.07
      Lens 31.8341.8318.0159.349×10−29.474×10−21.961×10−16.23
      Lens 42.4992.4748.0011.543×10−11.496×10−12.058×10−16.24
      Lens 54.8914.8314.5332.771×10−12.720×10−11.207×10−110.2
      Lens 64.1453.9725.1162.055×10−12.035×10−11.179×10−19.77
      Lens 74.5844.6005.8992.413×10−12.368×10−11.575×10−18.47
      Lens 84.5524.6505.8061.631×10−11.610×10−12.550×10−18.61
      Lens 93.7884.1218.6811.083×10−11.059×10−11.771×10−15.75
      Lens 107.9437.3515.3742.277×10−12.203×10−11.862×10−16.29
      Lens 114.7744.9576.3871.314×10−11.304×10−12.243×10−17.82
      Lens 128.2208.3671.526×1011.978×10−12.027×10−12.549×10−13.27
      Lens 135.2635.2004.3351.156×10−11.173×10−11.168×10−19.50
      TC4 barrel4.402E+023.995E+022.830E+029.2399.2674.9461.81
    Tools

    Get Citation

    Copy Citation Text

    Zhiyu HUANG, Junqing ZHU, Yongxian WANG, Weiqi HUANG, Yingjun GUAN. Optimization design of the barrel structure for large-aperture refractive space telescopes[J]. Infrared and Laser Engineering, 2025, 54(5): 20240529

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical design and fabrication

    Received: Dec. 23, 2024

    Accepted: --

    Published Online: May. 26, 2025

    The Author Email:

    DOI:10.3788/IRLA20240529

    Topics