Journal of Synthetic Crystals, Volume. 54, Issue 5, 873(2025)
Amidine Small-Molecule Interfacial Modification Strategy in Perovskite Solar Cells
[1] CHEN X, JIA Z Y, CHEN Z et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 4, 1594-1606(2020).
[2] YUN H S, KWON H W, PAIK M J et al. Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers. Nature Energy, 7, 828-834(2022).
[3] CHEN W J, LI D, CHEN S S et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells. Advanced Energy Materials, 10, 2000851(2020).
[4] LIU K K, LUO Y J, JIN Y B et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nature Communications, 13, 4891(2022).
[5] GAO Y, XU W Z, ZHANG S W et al. Double cascading charge transfer at integrated perovskite/organic bulk heterojunctions for extended near-infrared photoresponse and enhanced photocurrent. Small, 18, 2106083(2022).
[6] GUO Q, BAI Y M, LANG K et al. Expanding the light harvesting of CsPbI2Br to near infrared by integrating with organic bulk heterojunction for efficient and stable solar cells. ACS Applied Materials & Interfaces, 11, 37991-37998(2019).
[7] BI H, ZUO X, LIU B B et al. Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 9, 3940-3951(2021).
[8] LI Y, LIU L D, ZHENG C et al. Plant-derived l-theanine for ultraviolet/ozone resistant perovskite photovoltaics. Advanced Energy Materials, 13, 2203190(2023).
[9] ZHU P C, GU S, LUO X et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Advanced Energy Materials, 10, 1903083(2020).
[10] ZENG F C, XU L, XING J H et al. Gas molecule assisted all-inorganic dual-interface passivation strategy for high-performance perovskite solar cells. Advanced Science, 11, 2404444(2024).
[11] WANG M, LI L, WANG J H et al. Accelerating direct formation of α-FAPbl3 by dual-additives synergism for inverted perovskite solar cells with efficiency exceeding 26%. Chemical Engineering Journal, 505, 159056(2025).
[12] ZHENG Z H, LI F M, GONG J et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Advanced Materials, 34, 2109879(2022).
[13] DONG B T, WEI M Y, LI Y H et al. Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nature Energy(2025).
[14] KOJIMA A, TESHIMA K, SHIRAI Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051(2009).
[15] KIM H S, LEE C R, IM J H et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2, 591(2012).
[16] YU M, FAN L, WANG L X et al. Charged defect management for high-efficiency planar solar cells: reducing charge recombination and open-circuit voltage loss by employing donor-acceptor molecules to regulate perovskite electronic properties. Chemical Engineering Journal, 505, 159035(2025).
[17] KHAN A D, BASIT A, REHMAN Q et al. Innovative designs for semitransparent carbon-based perovskite solar cells for building-integrated applications. Solar Energy, 282, 112951(2024).
[18] TIAN R J, WANG Y H et al. Incorporation of small molecules with polar functional group to elevate crystallinity and suppress nonradiative recombination in perovskite solar cells. Solar RRL, 8, 2400365(2024).
[19] YANG L, FENG J S, LIU Z K et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Advanced Materials, 34(2022).
[20] KESHTMAND R, ZAMANI M M R, TAGHAVINIA N. Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer. Surfaces and Interfaces, 28, 101596(2022).
[21] ANARAKI E H, KERMANPUR A, STEIER L et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & Environmental Science, 9, 3128-3134(2016).
[22] JIN Y B, FENG H P, LI Y J et al. Recrystallizing sputtered NiOx for improved hole extraction in perovskite/silicon tandem solar cells. Advanced Energy Materials, 2403911(2024).
[23] JARIWALA S, KUMAR R E, EPERON G E et al. Dimethylammonium addition to halide perovskite precursor increases vertical and lateral heterogeneity. ACS Energy Letters, 7, 204-210(2022).
[24] XU R Y, SUN Y L, DAI J F et al. Buried interface regulation for efficient and stable perovskite minimodules. Nano Energy, 133, 110406(2025).
[25] ZHANG G D, ZHENG Y F, WANG H N et al. Shellac protects perovskite solar cell modules under real-world conditions. Joule, 8, 496-508(2024).
[26] KIM J Y, LEE J W, JUNG H S et al. High-efficiency perovskite solar cells. Chemical Reviews, 120, 7867-7918(2020).
[27] MARIANI P, MOLINA G M Á, BARICHELLO J et al. Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests. Nature Communications, 15, 4552(2024).
[28] LIAO C, TAO R M, WANG G L et al. Gas quenched alternating cations in the interlayer space quasi-2D (GA)(MA)5Pb5I16 perovskite for radiation tolerant single junction and stable monolithic quasi-2D perovskite-silicon tandem solar cells. ACS Energy Letters, 9, 5310-5318(2024).
[29] AFRAJ S N, VELUSAMY A, CHEN C Y et al. Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 10, 11254-11267(2022).
[30] ZHANG C, FENG X Z, SONG Q L et al. Blue-violet emission with near-unity photoluminescence quantum yield from Cu(I)-doped Rb3InCl6 single crystals. The Journal of Physical Chemistry Letters, 12, 7928-7934(2021).
[31] YOO J J, SEO G, CHUA M R et al. Efficient perovskite solar cells via improved carrier management. Nature, 590, 587-593(2021).
[32] SU X M, LIAN L Y, ZHANG C et al. Enhanced photoluminescence of colloidal lead-free double perovskite Cs2Ag1-xNaxInCl6 nanocrystals doped with manganese. Advanced Optical Materials, 9, 2001866(2021).
[33] MIN H, LEE D Y, KIM J et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598, 444-450(2021).
[34] JIANG Q, ZHAO Y, ZHANG X W et al. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13, 460-466(2019).
[35] KUNDAR M, KUMAR P, SHARMA S K et al. Stable perovskite solar cells based on direct surface passivation employing 2D perovskites. Solar RRL, 7, 2300572(2023).
[36] XIA J M, LIANG C, MEI S L et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 9, 2919-2927(2021).
[37] WU Y H, WANG Q, CHEN Y T et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy & Environmental Science, 15, 4700-4709(2022).
[38] ZHANG X W, WANG Y, ZHANG K et al. Reinforcing coverage of self-assembled monomolecular layers for inverted perovskite solar cells with efficiency of 25.70%. Angewandte Chemie(2025).
Get Citation
Copy Citation Text
Zhichao WANG, Linfeng YE, Miao RUAN, Chao YANG, Xuefeng JIA, Yufeng NI, Yonggang GUO, Peng GAO. Amidine Small-Molecule Interfacial Modification Strategy in Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2025, 54(5): 873
Category:
Received: Jan. 10, 2025
Accepted: --
Published Online: Jul. 2, 2025
The Author Email: Zhichao WANG (super_wzc@163.com)