Journal of Synthetic Crystals, Volume. 54, Issue 5, 882(2025)

Preparation of Carbonized Kapok Fiber Porous Carbons by One-Step Carbonization Process and Its Effect on the Stability of Zinc Anode

Qi SONG, Ling JIANG, Hongming CHEN, Huifu LI, Shuo HUANG*, Lijie LUO, and Yongjun CHEN
References(28)

[1] WANG L, PENG M K, CHEN J R et al. Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Advanced Materials, 34, 2203744(2022).

[2] ZHOU M, GUO S, LI J L et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Advanced Materials, 33, 2100187(2021).

[3] XU D M, REN X T, XU Y et al. Highly stable aqueous zinc metal batteries enabled by an ultrathin crack-free hydrophobic layer with rigid sub-nanochannels. Advanced Science, 10, 2303773(2023).

[4] DENG Z Y, LI M Z, FANG G Z et al. Progress on aqueous zinc-ion batteries. Journal of the Chinese Ceramic Society, 52, 405-427(2024).

[5] YANG H J, CHANG Z, QIAO Y et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angewandte Chemie (International Ed), 59, 9377-9381(2020).

[6] ZHOU Y H, LI G Y, FENG S F et al. Regulating Zn ion desolvation and deposition chemistry toward durable and fast rechargeable Zn metal batteries. Advanced Science, 10, 2205874(2023).

[7] WEI J, ZHANG P B, SUN J J et al. Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chemical Society Reviews, 53, 10335-10369(2024).

[8] SU L, LU F, LI Y R et al. Gyroid liquid crystals as quasi-solid-state electrolytes toward ultrastable zinc batteries. ACS Nano, 18, 7633-7643(2024).

[9] RUAN P C, LIANG S Q, LU B G et al. Design strategies for high-energy-density aqueous zinc batteries. Angewandte Chemie (International Ed), 61(2022).

[10] LAI C Y, LIAO Y S, KU H Y et al. Enhancing zinc electrode stability through pre-desolvation and accelerated charge transfer via a polyimide interface for zinc-ion batteries. Small, 20, 2401713(2024).

[11] LIU X, MA Q X, WANG J H et al. A biomimetic polymer-based composite coating inhibits zinc dendrite growth for high-performance zinc-ion batteries. ACS Applied Materials & Interfaces, 14, 10384-10393(2022).

[12] LI B, LIU S D, GENG Y F et al. Achieving stable zinc metal anode via polyaniline interface regulation of Zn ion flux and desolvation. Advanced Functional Materials, 34, 2214033(2024).

[13] LIU Y Q, YANG J, LI X et al. Study on the modification of zinc anode with LaF3 coating in aqueous zinc-ion batteries. Journal of Synthetic Crystals, 53, 1078-1085(2024).

[14] CHEN M J, CUI Y M, LIU W F et al. Ti4O7 coating creates a highly stable Zn anode for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 11, 4748-4756(2024).

[15] CAI Z J, WANG J P, LIAN S T et al. Regulating the Zn electrode/electrolyte interface toward high stability-insights from the resting time impact on Zn electrode performance. Advanced Functional Materials, 2401367(2024).

[16] LI H Y, LI S J, HOU R L et al. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chemical Society Reviews, 53, 7742-7783(2024).

[17] YUAN W T, NIE X Y, WANG Y Y et al. Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries. ACS Nano, 17, 23861-23871(2023).

[18] YANG X Z, DONG Z X, WENG G et al. Crystallographic manipulation strategies toward reversible Zn anode with orientational deposition. Advanced Energy Materials, 14, 2401293(2024).

[19] ZHAO Z D, WANG R, PENG C X et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nature Communications, 12, 6606(2021).

[20] XU D M, WANG Z, LIU C J et al. Water catchers within sub-nano channels promote step-by-step zinc-ion dehydration enable highly efficient aqueous zinc-metal batteries. Advanced Materials, 36, 2403765(2024).

[21] WANG L P, ZHANG B, ZHOU W H et al. Tandem chemistry with Janus mesopores accelerator for efficient aqueous batteries. Journal of the American Chemical Society, 146, 6199-6208(2024).

[22] WANG C W, HUANG J F, QI H et al. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. Journal of Power Sources, 358, 85-92(2017).

[23] JIAN W B, ZHANG W L, WEI X E et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Advanced Functional Materials, 32, 2209914(2022).

[24] ZHENG J X, ZHAO Q, TANG T et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science, 366, 645-648(2019).

[25] HAN D L, WU S C, ZHANG S W et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small, 16, 2001736(2020).

[26] DU H R, ZHAO R R, YANG Y et al. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angewandte Chemie (International Ed), 61, 202114789(2022).

[27] LI X, LI Y, ZHAO X et al. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Materials, 53, 505-513(2022).

[28] MAO K, SHI J J, ZHANG Q X et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy, 103, 107791(2022).

Tools

Get Citation

Copy Citation Text

Qi SONG, Ling JIANG, Hongming CHEN, Huifu LI, Shuo HUANG, Lijie LUO, Yongjun CHEN. Preparation of Carbonized Kapok Fiber Porous Carbons by One-Step Carbonization Process and Its Effect on the Stability of Zinc Anode[J]. Journal of Synthetic Crystals, 2025, 54(5): 882

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Oct. 30, 2024

Accepted: --

Published Online: Jul. 2, 2025

The Author Email: Shuo HUANG (huangshuo@hainanu.edu.cn)

DOI:10.16553/j.cnki.issn1000-985x.2024.0262

Topics