Electronics Optics & Control, Volume. 32, Issue 8, 92(2025)
A Helicopter Driving Status Detection Method Based on Keypoint Detection
[2] [2] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[3] [3] KRIZHEVSKY A, SUTSKEVER L, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of ACM, 2017, 60(6): 84-90.
[4] [4] ISHWARYA K, NITHYA A A. Squirrel search optimization with deep convolutional neural network for human pose estimation[J]. Computers, Materials & Continua, 2023, 74(3): 6081-6099.
[5] [5] CAO Z, HIDALGO M G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[6] [6] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//IEEE/CVF International Conference on Computer Vision. [S. l. ]: IEEE, 2021: 10012-10022.
[7] [7] YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: a lightweight high-resolution network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CV-PR). Nashville: IEEE, 2021: 10435-10445.
[8] [8] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[9] [9] JIANG T, LU P, ZHANG L, et al. RTMPose: real-time multi-person pose estimation based on mmpose[R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2303. 07399.
[11] [11] HUA W Z, DAI Z H, LIU H X, et al. Transformer quality in linear time[C]//International Conference on Machine Learning. Maryland: PMLR, 2022: 9099-9117.
[12] [12] XU Y F, ZHANG J, ZHANG Q M, et al. ViTPose: simple vision Transformer baselines for human pose estimation[J]. Advances in Neural Information Processing Systems, 2022, 35: 38571-38584.
[13] [13] LI Y J, YANG S, LIU P D, et al. SimCC: a simple coordinate classification perspective for human pose estimation[C]//European Conference on Computer Vision(ECCV). Cham: Springer, 2022: 89-106.
[14] [14] LYU C Q, ZHANG W W, HUANG H A, et al. RTMDet: an empirical study of designing real-time object detectors[R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2212. 07784.
[15] [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[16] [16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc. , 2017: 6000-6010.
[17] [17] XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]//European Conference on Computer Vision(ECCV). Cham: Springer, 2018: 466-481.
Get Citation
Copy Citation Text
HU Chenyu, CHEN Renwen, HOU Xintong, ZHENG Boyu, WEI Zusheng, DING Minghao, CAO Wenbin. A Helicopter Driving Status Detection Method Based on Keypoint Detection[J]. Electronics Optics & Control, 2025, 32(8): 92
Category:
Received: Jun. 28, 2024
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: