Chinese Journal of Lasers, Volume. 50, Issue 7, 0708002(2023)

Advances in Strong-Field Molecular Dynamics of Femtosecond Laser Filamentation in Air

Jiachen Wang1,2, Lanjun Guo1, Nan Zhang1,2, Zhi Zhang1,3, Lie Lin1,3, and Lu Sun1,2、*
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    References(176)

    [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [2] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [3] Chin S L, Hosseini S A, Liu W et al. The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges[J]. Canadian Journal of Physics, 83, 863-905(2005).

    [4] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [5] Chen Y H, Varma S, Antonsen T M et al. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments[J]. Physical Review Letters, 105, 215005(2010).

    [6] Eisenmann S, Pukhov A, Zigler A. The fine structure of a laser-plasma filament in air[J]. Physical Review Letters, 98, 155002(2007).

    [7] He L X, Lan P F, Le A T et al. Real-time observation of molecular spinning with angular high-harmonic spectroscopy[J]. Physical Review Letters, 121, 163201(2018).

    [8] Chatterley A S, Schouder C, Christiansen L et al. Long-lasting field-free alignment of large molecules inside helium nanodroplets[J]. Nature Communications, 10, 1-7(2019).

    [9] Sayler A M, Wang P Q, Carnes K D et al. Determining laser-induced dissociation pathways of multielectron diatomic molecules: application to the dissociation of O2+ by high-intensity ultrashort pulses[J]. Physical Review A, 75, 063420(2007).

    [10] Yao J P, Chu W, Liu Z X et al. An anatomy of strong-field ionization-induced air lasing[J]. Applied Physics B, 124, 73(2018).

    [11] Qi P F, Qian W Q, Guo L J et al. Sensing with femtosecond laser filamentation[J]. Sensors, 22, 7076(2022).

    [12] Wang T J, Chen N, Guo H et al. Principle and research progress of atmospheric remote sensing by intense femtosecond lasers[J]. Laser & Optoelectronics Progress, 59, 0700001(2022).

    [13] Steingrube D S, Schulz E, Binhammer T et al. Generation of high-order harmonics with ultra-short pulses from filamentation[J]. Optics Express, 17, 16177-16182(2009).

    [14] Wang Y H, Long J, Liu C P et al. Terahertz radiation enhancement from femtosecond laser ionized gas micro-plasma under static electric field[J]. Chinese Journal of Lasers, 49, 1114001(2022).

    [15] Wang J X, Yu Z Q, Hu J B et al. Effect of pulse separation induced by dual-wavelength wave plate on terahertz waves radiation from two-color field[J]. Chinese Journal of Lasers, 48, 0314002(2021).

    [16] Rohwetter P, Kasparian J, Stelmaszczyk K et al. Laser-induced water condensation in air[J]. Nature Photonics, 4, 451-456(2010).

    [17] Houard A, Walch P, Produit T et al. Laser-guided lightning[J]. Nature Photonics, 17, 231-235(2023).

    [18] Society T O. Program of the 1964 spring meeting of the optical society of America, incorporated[J]. Journal of the Optical Society of America, 54, 559-582(1964).

    [19] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [20] Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 69, 036607(2004).

    [21] Gaeta A L. Catastrophic collapse of ultrashort pulses[J]. Physical Review Letters, 84, 3582-3585(2000).

    [22] Yang G Z, Shen Y R. Spectral broadening of ultrashort pulses in a nonlinear medium[J]. Optics Letters, 9, 510-512(1984).

    [23] DeMartini F, Townes C H, Gustafson T K et al. Self-steepening of light pulses[J]. Physical Review, 164, 312-323(1967).

    [24] Ranka J K, Gaeta A L. Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses[J]. Optics Letters, 23, 534-536(1998).

    [25] Javan A, Kelley P. 6A5-Possibility of self-focusing due to intensity dependent anomalous dispersion[J]. IEEE Journal of Quantum Electronics, 2, 470-473(1966).

    [26] Nibbering E T J, Curley P F, Grillon G et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters, 21, 62-64(1996).

    [27] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letters, 13, 479-482(1964).

    [28] Marburger J H. Self-focusing: theory[J]. Progress in Quantum Electronics, 4, 35-110(1975).

    [29] Loy M M T, Shen Y R. Small-scale filaments in liquids and tracks of moving foci[J]. Physical Review Letters, 22, 994-997(1969).

    [30] Brodeur A, Chien C Y, Ilkov F A et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 22, 304-306(1997).

    [31] Mlejnek M, Wright E M, Moloney J V. Femtosecond pulse propagation in argon: a pressure dependence study[J]. Physical Review E, 58, 4903-4910(1998).

    [32] Mlejnek M, Wright E M, Moloney J V. Dynamic spatial replenishment of femtosecond pulses propagating in air[J]. Optics Letters, 23, 382-384(1998).

    [33] Mlejnek M, Wright E M, Moloney J V. Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air[J]. Optics Express, 4, 223-228(1999).

    [34] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [35] Brooks P R, Jones E M. Reactive scattering of K atoms from oriented CH3I molecules[J]. The Journal of Chemical Physics, 45, 3449-3450(1966).

    [36] Brooks P R. Reactions of oriented molecules[J]. Science, 193, 11-16(1976).

    [37] Normand D, Lompre L A, Cornaggia C. Laser-induced molecular alignment probed by a double-pulse experiment[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 25, L497-L503(1992).

    [38] Torres R, de Nalda R, Marangos J P. Dynamics of laser-induced molecular alignment in the impulsive and adiabatic regimes: a direct comparison[J]. Physical Review A, 72, 023420(2005).

    [39] Liu W, Chin S. Direct measurement of the critical power of femtosecond Ti: sapphire laser pulse in air[J]. Optics Express, 13, 5750-5755(2005).

    [40] Seideman T. Rotational excitation and molecular alignment in intense laser fields[J]. The Journal of Chemical Physics, 103, 7887-7896(1995).

    [41] Seideman T. Revival structure of aligned rotational wave packets[J]. Physical Review Letters, 83, 4971-4974(1999).

    [42] Ortigoso J, Rodrı́guez M, Gupta M et al. Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field[J]. The Journal of Chemical Physics, 110, 3870-3875(1999).

    [43] Rosca-Pruna F, Vrakking M J. Experimental observation of revival structures in picosecond laser-induced alignment of I2[J]. Physical Review Letters, 87, 153902(2001).

    [44] Averbukh I S, Arvieu R. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor[J]. Physical Review Letters, 87, 163601(2001).

    [45] Leibscher M, Averbukh I S, Rabitz H. Molecular alignment by trains of short laser pulses[J]. Physical Review Letters, 90, 213001(2003).

    [46] Bisgaard C Z, Poulsen M D, Péronne E et al. Observation of enhanced field-free molecular alignment by two laser pulses[J]. Physical Review Letters, 92, 173004(2004).

    [47] Cryan J P, Bucksbaum P H, Coffee R N. Field-free alignment in repetitively kicked nitrogen gas[J]. Physical Review A, 80, 063412(2009).

    [48] Hertz E, Rouzée A, Guérin S et al. Optimization of field-free molecular alignment by phase-shaped laser pulses[J]. Physical Review A, 75, 031403(2007).

    [49] Rouzée A, Hertz E, Lavorel B et al. Towards the adaptive optimization of field-free molecular alignment[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 41, 074002(2008).

    [50] Ghafur O, Rouzée A, Gijsbertsen A et al. Impulsive orientation and alignment of quantum-state-selected NO molecules[J]. Nature Physics, 5, 289-293(2009).

    [51] Rouzée A, Gijsbertsen A, Ghafur O et al. Optimization of laser field-free orientation of a state-selected NO molecular sample[J]. New Journal of Physics, 11, 105040(2009).

    [52] Nielsen J H, Simesen P, Bisgaard C Z et al. Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment[J]. Physical Chemistry Chemical Physics: PCCP, 13, 18971-18975(2011).

    [53] Karamatskos E T, Raabe S, Mullins T et al. Molecular movie of ultrafast coherent rotational dynamics of OCS[J]. Nature Communications, 10, 3364(2019).

    [54] Lee K F, Villeneuve D M, Corkum P B et al. Field-free three-dimensional alignment of polyatomic molecules[J]. Physical Review Letters, 97, 173001(2006).

    [55] Artamonov M, Seideman T. Theory of three-dimensional alignment by intense laser pulses[J]. The Journal of Chemical Physics, 128, 154313(2008).

    [56] Zeng B, Chu W, Li G H et al. Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy[J]. Physical Review A, 89, 042508(2014).

    [57] Wu J, Cai H, Peng Y et al. Control of femtosecond filamentation by field-free revivals of molecular alignment[J]. Laser Physics, 19, 1759-1768(2009).

    [58] Cai H, Wu J, Li H et al. Elongation of femtosecond filament by molecular alignment in air[J]. Optics Express, 17, 21060-21065(2009).

    [59] Cai H, Wu J, Peng Y et al. Comparison study of supercontinuum generation by molecular alignment of N2 and O2[J]. Optics Express, 17, 5822-5828(2009).

    [60] Chen J X, Ren H Z, Ma R et al. Field-induced ionization and Coulomb explosion of CO2 by intense femtosecond laser pulses[J]. International Journal of Mass Spectrometry, 228, 81-89(2003).

    [61] Dietrich P, Strickland D T, Laberge M et al. Molecular reorientation during dissociative multiphoton ionization[J]. Physical Review A, 47, 2305-2311(1993).

    [62] Posthumus J H, Plumridge J, Thomas M K et al. Dynamic and geometric laser-induced alignment of molecules in intense laser fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 31, L553(1998).

    [63] Chen J X, Li X F. Characteristics of dynamic alignment for diatomic and linear triatomic molecules in intense femtosecond laser fields[J]. International Journal of Mass Spectrometry, 243, 155-161(2005).

    [64] Keldysh L. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics-JETP, 20, 1307-1314(1965).

    [65] Chin S L, Lambropoulos P[M]. Multiphoton ionization of atoms(1984).

    [66] Protopapas M, Keitel C H, Knight P L. Atomic physics with super-high intensity lasers[J]. Reports on Progress in Physics, 60, 389-486(1997).

    [67] Pfeiffer A N, Cirelli C, Smolarski M et al. Breakdown of the independent electron approximation in sequential double ionization[J]. New Journal of Physics, 13, 093008(2011).

    [68] Fleischer A, Wörner H J, Arissian L et al. Probing angular correlations in sequential double ionization[J]. Physical Review Letters, 107, 113003(2011).

    [69] Fechner L, Camus N, Ullrich J et al. Strong-field tunneling from a coherent superposition of electronic states[J]. Physical Review Letters, 112, 213001(2014).

    [70] Zhou Y M, Li M, Li Y et al. Dissection of electron correlation in strong-field sequential double ionization using a classical model[J]. Optics Express, 25, 8450-8458(2017).

    [71] Walker B, Sheehy B, DiMauro L F et al. Precision measurement of strong field double ionization of helium[J]. Physical Review Letters, 73, 1227-1230(1994).

    [72] Becker W, Liu X J, Ho P J et al. Theories of photoelectron correlation in laser-driven multiple atomic ionization[J]. Reviews of Modern Physics, 84, 1011-1043(2012).

    [73] Shi T Y, Lin C D. Double photoionization and transfer ionization of He: shake-off theory revisited[J]. Physical Review Letters, 89, 163202(2002).

    [74] Litvinyuk I V, Légaré F, Dooley P W et al. Shakeup excitation during optical tunnel ionization[J]. Physical Review Letters, 94, 033003(2005).

    [75] Eichmann U, Dörr M, Becker W et al. Collective multi-electron tunneling ionization in strong fields[C], 525, 199-210(2000).

    [76] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [77] Schafer K J, Yang B, DiMauro L F et al. Above threshold ionization beyond the high harmonic cutoff[J]. Physical Review Letters, 70, 1599-1602(1993).

    [78] Staudte A, Ruiz C, Schöffler M et al. Binary and recoil collisions in strong field double ionization of helium[J]. Physical Review Letters, 99, 263002(2007).

    [79] Zhou Y, Liao Q, Lu P. Mechanism for high-energy electrons in nonsequential double ionization below the recollision-excitation threshold[J]. Physical Review A, 80, 023412(2009).

    [80] Rudenko A, de Jesus V L B, Ergler T et al. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm[J]. Physical Review Letters, 99, 263003(2007).

    [81] Chen X, Wu Y, Zhang J T. Knee structure in double ionization of noble atoms in circularly polarized laser fields[J]. Physical Review A, 95, 013402(2017).

    [82] Chaloupka J L, Hickstein D D. Dynamics of strong-field double ionization in two-color counterrotating fields[J]. Physical Review Letters, 116, 143005(2016).

    [83] Mancuso C A, Dorney K M, Hickstein D D et al. Controlling nonsequential double ionization in two-color circularly polarized femtosecond laser fields[J]. Physical Review Letters, 117, 133201(2016).

    [84] Huang C, Zhong M M, Wu Z M. Nonsequential double ionization by co-rotating two-color circularly polarized laser fields[J]. Optics Express, 27, 7616-7626(2019).

    [85] Ammosov M V, Delone N B, Krainov V. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field[J]. Soviet Journal of Experimental and Theoretical Physics, 64, 1191(1986).

    [86] Tong X M, Zhao Z X, Lin C D. Theory of molecular tunneling ionization[J]. Physical Review A, 66, 033402(2002).

    [87] Kjeldsen T K, Bisgaard C Z, Madsen L B et al. Influence of molecular symmetry on strong-field ionization: studies on ethylene, benzene, fluorobenzene, and chlorofluorobenzene[J]. Physical Review A, 71, 013418(2005).

    [88] Zhao Z X, Brabec T. Tunnel ionization in complex systems[J]. Journal of Modern Optics, 54, 981-997(2007).

    [89] Zhang B, Zhao Z X. Theory of tunnel ionization in complex systems[J]. Chinese Physics Letters, 27, 043301(2010).

    [90] Faisal F M. Multiple absorption of laser photons by atoms[J]. Journal of Physics B: Atomic and Molecular Physics, 6, L89-L92(1973).

    [91] Reiss H R. Effect of an intense electromagnetic field on a weakly bound system[J]. Physical Review A, 22, 1786-1813(1980).

    [92] Zhang B, Zhao Z. Strong-field approximation for the ionization of N2and CO2[J]. Physical Review A, 82, 035401(2010).

    [93] Telnov D A, Chu S I. Ab initio study of the orientation effects in multiphoton ionization and high-order harmonic generation from the ground and excited electronic states of H2+[J]. Physical Review A, 76, 043412(2007).

    [94] Tao L, McCurdy C W, Rescigno T N. Grid-based methods for diatomic quantum scattering problems: a finite-element discrete-variable representation in prolate spheroidal coordinates[J]. Physical Review A, 79, 012719(2009).

    [95] Guan X X, Secor E B, Bartschat K et al. Multiphoton ionization of H2+ in xuv laser pulses[J]. Physical Review A, 84, 033420(2011).

    [96] Litvinyuk I V, Lee K F, Dooley P W et al. Alignment-dependent strong field ionization of molecules[J]. Physical Review Letters, 90, 233003(2003).

    [97] Pavicić D, Lee K F, Rayner D M et al. Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields[J]. Physical Review Letters, 98, 243001(2007).

    [98] Hansen J L, Holmegaard L, Nielsen J H et al. Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 015101(2012).

    [99] Yu Z Q, Sun L, Zhang N et al. Anti-correlated plasma and THz pulse generation during two-color laser filamentation in air[J]. Ultrafast Science, 2022, 9853053(2022).

    [100] Xu H L, Azarm A, Chin S L. Controlling fluorescence from N2 inside femtosecond laser filaments in air by two-color laser pulses[J]. Applied Physics Letters, 98, 141111(2011).

    [101] Mancuso C A, Dorney K M, Hickstein D D et al. Observation of ionization enhancement in two-color circularly polarized laser fields[J]. Physical Review A, 96, 023402(2017).

    [102] Cornaggia C, Schmidt M, Normand D. Laser-induced nuclear motions in the Coulomb explosion of C2H2+ ions[J]. Physical Review A, 51, 1431-1437(1995).

    [103] Hering P, Cornaggia C. Coulomb explosion of N2 and CO2 using linearly and circularly polarized femtosecond laser pulses[J]. Physical Review A, 59, 2836-2843(1999).

    [104] Endo T, Fujise H, Kawachi Y et al. Selective bond breaking of CO2 in phase-locked two-color intense laser fields: laser field intensity dependence[J]. Physical Chemistry Chemical Physics, 19, 3550-3556(2017).

    [105] Scheller M, Born N, Cheng W B et al. Channeling the electrical breakdown of air by optically heated plasma filaments[J]. Optica, 1, 125-128(2014).

    [106] Schuh K, Kolesik M, Wright E M et al. Self-channeling of high-power long-wave infrared pulses in atomic gases[J]. Physical Review Letters, 118, 063901(2017).

    [107] Romanov D A, Gao X H, Gaeta A L et al. Intrapulse impact processes in dense-gas femtosecond laser filamentation[J]. Physical Review A, 97, 063411(2018).

    [108] Zhang L, Liu J M, Gong W Q et al. Diffraction based single pulse measurement of air ionization dynamics induced by femtosecond laser[J]. Optics Express, 29, 18601-18610(2021).

    [109] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2, 605-609(2008).

    [110] Silaev A A, Vvedenskii N V. Residual-current excitation in plasmas produced by few-cycle laser pulses[J]. Physical Review Letters, 102, 115005(2009).

    [111] Silaev A A, Ryabikin M Y, Vvedenskii N V. Strong-field phenomena caused by ultrashort laser pulses: effective one- and two-dimensional quantum-mechanical descriptions[J]. Physical Review A, 82, 033416(2010).

    [112] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 11, 32-53(2011).

    [113] Xu S Q, Sun X D, Zeng B et al. Simple method of measuring laser peak intensity inside femtosecond laser filament in air[J]. Optics Express, 20, 299-307(2012).

    [114] Daigle J F, Jaroń-Becker A, Hosseini S et al. Intensity clamping measurement of laser filaments in air at 400 and 800 nm[J]. Physical Review A, 82, 023405(2010).

    [115] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [116] Wei X Y, Tu Z W, Liu C et al. Differentiation of positional isomers of propyl alcohols using filament-induced fluorescence[J]. Chinese Physics Letters, 33, 054201(2016).

    [117] Bruzzese R, Sasso A, Solimeno S. Multiphoton excitation and ionization of atoms and molecules[J]. La Rivista Del Nuovo Cimento, 12, 1-105(1989).

    [118] Hu S L, Hao X L, Lü H et al. Quantum dynamics of atomic Rydberg excitation in strong laser fields[J]. Optics Express, 27, 31629-31643(2019).

    [119] Seaton M J. Radiative recombination of hydrogenic ions[J]. Monthly Notices of the Royal Astronomical Society, 119, 81-89(1959).

    [120] Rosmej F B, Astapenko V A, Lisitsa V S et al. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 5, 064201(2020).

    [121] Ticknor C, Rittenhouse S T. Three body recombination of ultracold dipoles to weakly bound dimers[J]. Physical Review Letters, 105, 013201(2010).

    [122] Bartschat K. Electron collisions: experiment, theory, and applications[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 132001(2018).

    [123] Gilmore F R, Laher R R, Espy P J. Franck-Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems[J]. Journal of Physical and Chemical Reference Data, 21, 1005-1107(1992).

    [124] Lofthus A, Krupenie P H. The spectrum of molecular nitrogen[J]. Journal of Physical and Chemical Reference Data, 6, 113-307(1977).

    [125] Luo Q, Hosseini A, Liu W W et al. Lasing action in air induced by ultrafast laser filamentation[J]. Optics and Photonics News, 15, 44-47(2004).

    [126] Becker A, Bandrauk A D, Chin S L. S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule[J]. Chemical Physics Letters, 343, 345-350(2001).

    [127] Xu H L, Azarm A, Bernhardt J et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical Physics, 360, 171-175(2009).

    [128] Arnold B R, Roberson S D, Pellegrino P M. Excited state dynamics of nitrogen reactive intermediates at the threshold of laser induced filamentation[J]. Chemical Physics, 405, 9-15(2012).

    [129] Talebpour A, Abdel-Fattah M, Bandrauk A et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses[J]. Laser Physics, 11, 68-76(2001).

    [130] Li S Y, Sui L Z, Chen A M et al. Angular distribution of plasma luminescence emission during filamentation in air[J]. Physics of Plasmas, 23, 023102(2016).

    [131] Mitryukovskiy S, Liu Y, Ding P J et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Letters, 114, 063003(2015).

    [132] Su Q, Sun L, Chu C et al. Effect of molecular orbital angular momentum on spatial distribution of fluorescence during femtosecond laser filamentation in air[J]. The Journal of Physical Chemistry Letters, 11, 730-734(2020).

    [133] Zhang Z. Research on femtosecond laser filamentation dynamics process and fluorescence signal enhancement method based on spatiotemporal control[D](2021).

    [134] McPherson A, Gibson G, Jara H et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 4, 595-601(1987).

    [135] Zhou X B. High-order harmonic spectroscopy of molecular structure and dynamics[D](2009).

    [136] Paulus G G, Nicklich W, Xu H et al. Plateau in above threshold ionization spectra[J]. Physical Review Letters, 72, 2851-2854(1994).

    [137] Niikura H, Légaré F, Hasbani R et al. Sub-laser-cycle electron pulses for probing molecular dynamics[J]. Nature, 417, 917-922(2002).

    [138] Shore B W, Knight P L. Enhancement of high optical harmonics by excess-photon ionisation[J]. Journal of Physics B: Atomic and Molecular Physics, 20, 413-423(1987).

    [139] Popmintchev T, Chen M C, Arpin P et al. The attosecond nonlinear optics of bright coherent X-ray generation[J]. Nature Photonics, 4, 822-832(2010).

    [140] Lewenstein M, Balcou P, Ivanov M Y et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 49, 2117-2132(1994).

    [141] Le A T, Lucchese R R, Tonzani S et al. Quantitative rescattering theory for high-order harmonic generation from molecules[J]. Physical Review A, 80, 013401(2009).

    [142] Aközbek N, Iwasaki A, Becker A et al. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses[J]. Physical Review Letters, 89, 143901(2002).

    [143] Aközbek N, Becker A, Scalora M et al. Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air[J]. Applied Physics B, 77, 177-183(2003).

    [144] Vockerodt T, Steingrube D S, Schulz E et al. Low- and high-order harmonic generation inside an air filament[J]. Applied Physics B, 106, 529-532(2012).

    [145] Chin S L[M]. Femtosecond laser filamentation(2010).

    [146] Ionin A A, Kudryashov S I, Seleznev L V et al. Third harmonic generation by ultrashort laser pulses tightly focused in air[J]. Laser Physics, 21, 500-504(2011).

    [147] Yao J P, Zeng B, Chu W et al. Enhancement of third harmonic generation in femtosecond laser induced filamentation-comparison of results obtained with plasma and a pair of glass plates[J]. Journal of Modern Optics, 59, 245-249(2012).

    [148] Liu Y, Kou C H, Houard A et al. Optimizing the third harmonic generated from air plasma filaments pumped by femtosecond laser pulses[J]. Journal of the Optical Society of America B, 36, G13-G18(2019).

    [149] Jusko C, Sridhar A, Appi E et al. Filamentation-assisted plasma lifetime measurements in atomic and molecular gases via third-harmonic enhancement[J]. Journal of the Optical Society of America B, 36, 3505-3513(2019).

    [150] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 5, 655-663(2011).

    [151] Chakraborty H S, Gaarde M B, Couairon A. Single attosecond pulses from high harmonics driven by self-compressed filaments[J]. Optics Letters, 31, 3662-3664(2006).

    [152] Steingrube D S, Schulz E, Binhammer T et al. High-order harmonic generation directly from a filament[J]. New Journal of Physics, 13, 043022(2011).

    [153] Lang Y, Peng Z Y, Liu J L et al. Proposal for high-energy cutoff extension of optical harmonics of solid materials using the example of a one-dimensional ZnO crystal[J]. Physical Review Letters, 129, 167402(2022).

    [154] Yao J P, Cheng Y. Air lasing: novel effects in strong laser fields and new technology in remote sensing[J]. Chinese Journal of Lasers, 47, 0500005(2020).

    [155] Dogariu A, Michael J B, Scully M O et al. High-gain backward lasing in air[J]. Science, 331, 442-445(2011).

    [156] Dogariu A, Miles R B. Nitrogen lasing in air[C], QW1E. 1(2013).

    [157] Dogariu A, Chng T L, Miles R B. Remote backward-propagating water lasing in atmospheric air[C], AW4K.5(2016).

    [158] Laurain A, Scheller M, Polynkin P. Low-threshold bidirectional air lasing[J]. Physical Review Letters, 113, 253901(2014).

    [159] Dogariu A, Miles R B. Three-photon femtosecond pumped backwards lasing in argon[J]. Optics Express, 24, A544-A552(2016).

    [160] Traverso A J, Sanchez-Gonzalez R, Yuan L Q et al. Coherence brightened laser source for atmospheric remote sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 15185-15190(2012).

    [161] Yuan L Q, Hokr B H, Traverso A J et al. Theoretical analysis of the coherence-brightened laser in air[J]. Physical Review A, 87, 023826(2013).

    [162] Kartashov D, Ališauskas S, Andriukaitis G et al. Free-space nitrogen gas laser driven by a femtosecond filament[J]. Physical Review A, 86, 033831(2012).

    [163] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 35, 31-53(2005).

    [164] Mitryukovskiy S, Liu Y, Ding P J et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses[J]. Optics Express, 22, 12750-12759(2014).

    [165] Sprangle P, Peñano J, Hafizi B et al. Remotely induced atmospheric lasing[J]. Applied Physics Letters, 98, 211102(2011).

    [166] Kartashov D, Ališauskas S, Pugžlys A et al. Theory of a filament initiated nitrogen laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094016(2015).

    [167] Liu Y, Ding P J, Lambert G et al. Recollision-induced superradiance of ionized nitrogen molecules[J]. Physical Review Letters, 115, 133203(2015).

    [168] Liu Y, Ding P J, Ibrakovic N et al. Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration[J]. Physical Review Letters, 119, 203205(2017).

    [169] Xu H L, Lötstedt E, Iwasaki A et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling[J]. Nature Communications, 6, 1-6(2015).

    [170] Yao J P, Jiang S C, Chu W et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields[J]. Physical Review Letters, 116, 143007(2016).

    [171] Zhang Q, Xie H Q, Li G H et al. Sub-cycle coherent control of ionic dynamics via transient ionization injection[J]. Communications Physics, 3, 1-6(2020).

    [172] Liu Z X, Yao J P, Chen J M et al. Near-resonant Raman amplification in the rotational quantum wave packets of nitrogen molecular ions generated by strong field ionization[J]. Physical Review Letters, 120, 083205(2018).

    [173] Yao J P, Chu W, Liu Z X et al. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields[J]. New Journal of Physics, 20, 033035(2018).

    [174] Britton M, Laferrière P, Ko D H et al. Testing the role of recollision in N2+ air lasing[J]. Physical Review Letters, 120, 133208(2018).

    [175] Wang S Q, Lötstedt E, Cao J C et al. Modulation of population inversion in N2+ by a pump-control-seed scheme[J]. Physical Review A, 106, 033110(2022).

    [176] Lei H B, Yao J P, Zhao J et al. Ultraviolet supercontinuum generation driven by ionic coherence in a strong laser field[J]. Nature Communications, 13, 1-9(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jiachen Wang, Lanjun Guo, Nan Zhang, Zhi Zhang, Lie Lin, Lu Sun. Advances in Strong-Field Molecular Dynamics of Femtosecond Laser Filamentation in Air[J]. Chinese Journal of Lasers, 2023, 50(7): 0708002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: nonlinear optics

    Received: Feb. 1, 2023

    Accepted: Mar. 13, 2023

    Published Online: Apr. 14, 2023

    The Author Email: Lu Sun (lusun@nankai.edu.cn)

    DOI:10.3788/CJL230474

    Topics