Journal of Synthetic Crystals, Volume. 50, Issue 8, 1496(2021)

Electrochemical Activity of Catalytic Ethanol Oxidation Properties Based on Ru@Pt/CNTs Nanoparticles

ZHANG Yujie1、*, XIAO Fengyan1, and ZHAO Bin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(23)

    [1] [1] CHEN A, OSTROM C. Palladium-based nanomaterials: synthesis and electrochemical applications[J]. Chemical Reviews, 2015, 115(21): 11999-12044.

    [2] [2] ZHAO X, LIU Q M, LI Q X, et al. Two-dimensional electrocatalysts for alcohol oxidation: a critical review[J]. Chemical Engineering Journal, 2020, 400: 125744.

    [3] [3] HUANG L, ZAMAN S, WANG Z T, et al. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells[J]. Acta Physico Chimica Sinica, 2020, 37: 202009035.

    [4] [4] HREN M, HRIBERNIK S, GORGIEVA S, et al. Chitosan-Mg(OH)2 based composite membrane containing nitrogen doped GO for direct ethanol fuel cell[J]. Cellulose, 2021, 28(3): 1599-1616.

    [5] [5] ZHAO G L, FANG C H, HU J W, et al. Platinum-based electrocatalysts for direct alcohol fuel cells: enhanced performances toward alcohol oxidation reactions[J]. ChemPlusChem, 2021, 86(4): 574-586.

    [6] [6] WAN Z R, BAI X, MO H, et al. Multi-porous NiAg-doped Pd alloy nanoparticles immobilized on reduced graphene oxide/CoMoO4 composites as a highly active electrocatalyst for direct alcohol fuel cell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126048.

    [7] [7] FASHEDEMI O O, MWONGA P V, MILLER H A, et al. Performance of Pd@FeCo catalyst in anion exchange membrane alcohol fuel cells[J]. Electrocatalysis, 2021, 12(3): 295-309.

    [8] [8] ADAM A M M, ADAM M I, ZHANG C M, et al. Ternary supportless Pd@Cd-Ag core-shell as advanced nanocatalysts towards electro-oxidation performance of ethanol[J]. Journal of Alloys and Compounds, 2021, 868: 158955.

    [9] [9] DU X W, LUO S P, DU H Y, et al. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2016, 4(5): 1579-1585.

    [10] [10] GUO L, CHEN S G, LI L, et al. A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction[J]. Journal of Power Sources, 2014, 247: 360-364.

    [11] [11] KIM Y S, NAM S H, SHIM H S, et al. Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation[J]. Electrochemistry Communications, 2008, 10(7): 1016-1019.

    [12] [12] DING X, YIN S B, AN K, et al. FeN stabilized FeN@Pt core-shell nanostructures for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(8): 4462-4469.

    [13] [13] LEAL DA SILVA E, CUA A, RITA ORTEGA VEGA M, et al. Influence of the support on PtSn electrocatalysts behavior: ethanol electro-oxidation performance and in situ ATR-FTIRS studies[J]. Applied Catalysis B: Environmental, 2016, 193: 170-179.

    [14] [14] NARAYANAMOORTHY B, DATTA K K R, ESWARAMOORTHY M, et al. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells[J]. ACS Catalysis, 2014, 4(10): 3621-3629.

    [15] [15] ZHANG Y, JANYASUPAB M, LIU C W, et al. Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells[J]. Advanced Functional Materials, 2012, 22(17): 3570-3575.

    [16] [16] ALAYOGLU S, ZAVALIJ P, EICHHORN B, et al. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles[J]. ACS Nano, 2009, 3(10): 3127-3137.

    [17] [17] HU Y M, ZHU A M, ZHANG Q G, et al. Preparation of PtRu/C core-shell catalyst with polyol method for alcohol oxidation[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11359-11368.

    [18] [18] WILSON O M, SCOTT R W J, GARCIA-MARTINEZ J C, et al. Synthesis, characterization, and structure-selective extraction of 1~3 nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles[J]. Journal of the American Chemical Society, 2005, 127(3): 1015-1024.

    [19] [19] SERPELL C J, COOKSON J, OZKAYA D, et al. Core@shell bimetallic nanoparticle synthesis via anion coordination[J]. Nature Chemistry, 2011, 3(6): 478-483.

    [20] [20] NILEKAR A U, ALAYOGLU S, EICHHORN B, et al. Preferential CO oxidation in hydrogen: reactivity of core shell nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(21): 7418-7428.

    [21] [21] JIANG M H, HU Y, ZHANG W J, et al. Regulating the alloying degree and electronic structure of Pt-Au nanoparticles for high-efficiency direct C2+ alcohol fuel cells[J]. Chemistry of Materials, 2021, 33(10): 3767-3778.

    [22] [22] SHAO Y Y, YIN G P, WANG J J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction[J]. Journal of Power Sources, 2006, 161(1): 47-53.

    [23] [23] ABO-HAMED E K, PENNYCOOK T, VAYNZOF Y, et al. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane[J]. Small, 2014, 10(15): 3145-3152.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yujie, XIAO Fengyan, ZHAO Bin. Electrochemical Activity of Catalytic Ethanol Oxidation Properties Based on Ru@Pt/CNTs Nanoparticles[J]. Journal of Synthetic Crystals, 2021, 50(8): 1496

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 31, 2021

    Accepted: --

    Published Online: Nov. 6, 2021

    The Author Email: ZHANG Yujie (zyjyt_70@163.com)

    DOI:

    CSTR:32186.14.

    Topics