Chinese Journal of Lasers, Volume. 49, Issue 23, 2301009(2022)

Tm∶YLF Laser Intracavity Pumped 2.1 μm Ho∶YVO4 Laser

Hongchun Wu1,2、*
Author Affiliations
  • 1Key Laboratory of Research on Chemistry and Physics of Optoelectronic Materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, Fujian, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(29)

    [1] Cheng Y, Wang G F, Zhang W et al. Feasibility and long-term safety of Ho∶YAG laser lithotripsy in broncholithiasis patients[J]. BMC Pulmonary Medicine, 21, 81(2021).

    [2] Elder I. Performance requirements for countermeasures lasers[J]. Proceedings of SPIE, 7836, 783605(2010).

    [3] Astrauskas I, Považay B, Baltuška A et al. Influence of 2.09-μm pulse duration on through-silicon laser ablation of thin metal coatings[J]. Optics & Laser Technology, 133, 106535(2021).

    [4] Wei L, Wu D C, Liu D et al. Long-wave infrared ZnGeP2 optical parametric oscillator pumped by Ho∶YLF laser[J]. Chinese Journal of Lasers, 48, 0101002(2021).

    [5] Zhao T, Wang F, Shen D Y. High-power Ho∶YAG laser wing-pumped by a Tm∶fiber laser at 1933 nm[J]. Applied Optics, 54, 1594-1597(2015).

    [6] Ji E C, Liu Q, Hu Z Y et al. High-power, high-energy Ho∶YAG oscillator pumped by a Tm-doped fiber laser[J]. Chinese Optics Letters, 13, 121402-121406(2015).

    [7] Shen Y J, Yao B Q, Duan X M et al. 103 W in-band dual-end-pumped Ho∶YAG laser[J]. Optics Letters, 37, 3558-3560(2012).

    [8] Cai Y H, Zhang J X, Chen X et al. Side-pumped, conductively cooled (Tm, Ho)∶YLF pulsed laser with more than one-hundred-nanosecond pulse width[J]. Chinese Journal of Lasers, 48, 1301005(2021).

    [9] Yao B Q, Li G, Meng P B et al. High power diode-pumped continuous wave and Q-switch operation of Tm, Ho∶YVO4 laser[J]. Laser Physics Letters, 7, 857-861(2010).

    [10] Rustad G, Stenersen K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion[J]. IEEE Journal of Quantum Electronics, 32, 1645-1656(1996).

    [11] Eichhorn M. Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 93, 269-316(2008).

    [12] Stoneman R C, Esterowitz L. Intracavity-pumped 2.09-μm Ho∶YAG laser[J]. Optics Letters, 17, 736-738(1992).

    [13] Hayward R A, Clarkson W A, Hanna D C. High-power diode-pumped room-temperature Tm∶YAG and intracavity-pumped Ho∶YAG lasers[C], MB8(2000).

    [14] Huang H Z, Huang J H, Liu H G et al. Efficient 2122 nm Ho∶YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm∶YAG laser[J]. Optics Letters, 41, 3952-3955(2016).

    [15] Huang H Z, Huang J H, Liu H G et al. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser[J]. Optics Express, 26, 5758-5768(2018).

    [16] Schellhorn M, Hirth A, Kieleck C. Ho∶YAG laser intracavity pumped by a diode-pumped Tm∶YLF laser[J]. Optics Letters, 28, 1933-1935(2003).

    [17] Zhu G L, He X D, Yao B Q et al. Ho∶YAP laser intra-cavity pumped by a diode-pumped Tm∶YLF laser[J]. Laser Physics, 23, 015002(2012).

    [18] Zhang W S, Li L J, Gao Q et al. Efficient continuous-wave Ho∶GTO laser intracavity-pumped by an in-band pumped Tm∶YAG laser[J]. Infrared Physics & Technology, 118, 103849(2021).

    [19] Hu H W, Huang H Z, Huang J H et al. Tm∶YVO4 laser intra-cavity pumped 2.1 μm Ho laser[J]. Optics Communications, 472, 125748(2020).

    [20] Duan X M, Li L J, Zheng L H et al. Efficient intracavity-pumped Ho∶SSO laser with cascaded in-band pumping scheme[J]. Infrared Physics & Technology, 94, 7-10(2018).

    [21] Hu H W, Huang H Z, Ge Y et al. Compact intracavity-pumped Ho∶YVO4 laser developed using a diode-pumped Tm∶YAP laser[J]. Optical Engineering, 59, 096106(2020).

    [22] Serres J M, Loiko P A, Mateos X et al. Ho∶KLuW microchip laser intracavity pumped by a diode-pumped Tm∶KLuW laser[J]. Applied Physics B, 120, 123-128(2015).

    [23] Yu H H, Wang Z P, Xu M et al. Research progress on vanadate series crystals[J]. Journal of Synthetic Crystals, 41, 128-136(2012).

    [24] Wang J, Dai T F, Liu H Y et al. Tunable pulse width passively Q-switched Nd∶YVO4 laser based on graphene devices[J]. Laser & Optoelectronics Progress, 58, 1516021(2021).

    [25] Lin D, Wang J, Li B X et al. Frequency degeneracy of transverse modes in Nd∶YVO4 lasers[J]. Chinese Journal of Lasers, 48, 2001003(2021).

    [26] Wang R X, Yao B Q, Zhao B R et al. Single-longitudinal-mode Ho∶YVO4 MOPA system with a passively Q-switched unidirectional ring oscillator[J]. Optics Express, 27, 34618-34625(2019).

    [27] Han L, Yao B Q, Duan X M et al. Experimental study of continuous-wave and Q-switched laser performances of Ho∶YVO4 crystal[J]. Chinese Optics Letters, 12, 081401(2014).

    [28] Li G, Yao B Q, Meng P B et al. High-efficiency resonantly pumped room temperature Ho∶YVO4 laser[J]. Optics Letters, 36, 2934-2936(2011).

    [29] McCumber D E. Einstein relations connecting broadband emission and absorption spectra[J]. Physical Review, 136, A954-A957(1964).

    Tools

    Get Citation

    Copy Citation Text

    Hongchun Wu. Tm∶YLF Laser Intracavity Pumped 2.1 μm Ho∶YVO4 Laser[J]. Chinese Journal of Lasers, 2022, 49(23): 2301009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 11, 2022

    Accepted: Apr. 11, 2022

    Published Online: Nov. 15, 2022

    The Author Email: Wu Hongchun (wuhongchun@fjirsm.ac.cn)

    DOI:10.3788/CJL202249.2301009

    Topics