Infrared and Laser Engineering, Volume. 50, Issue 7, 20210162(2021)
High-resolution three-dimensional imaging based on all-fiber photon-counting Lidar system
[1] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 48, 6241-6251(2009).
[2] [2] Li Z H. Multibeam photoncounting laser imaging [D]. Shanghai: East China Nmal University, 2017. (in Chinese)
[3] Ge Peng, Guo Jingjing, Chen Cong, et al. Photon-counting 3D imaging based on Geiger-mode APD array[J]. Infrared and Laser Engineering, 49, 0305007(2020).
[4] Du B C, Pang C K, Wu D, et al. High-speed photon-counting laser ranging for broad range of distances[J]. Scientific Reports, 8(2018).
[5] Mccarthy A, Krichel N, Gemmell N, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 21, 8904-8915(2013).
[6] Shangguan M J, Xia H Y, Wang C, et al. All-fiber upconversion high spectral resolution wind[J]. Optics Express, 24, 19322-19336(2016).
[7] [7] Clifton W E, Steeleb B, Nelsonb G, et al. Medium altitude airbne Geigermode mapping lidar system[C]Laser Radar Technology Applications XX; Atmospheric Propagation XII. International Society f Optics Photonics, 2015: 946506.
[8] Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping[J]. Remote Sensing, 8, 958(2016).
[9] Marino R M, Davis W R. Jigsaw: A foliage-penetrating 3D imaging laser radar system[J]. Lincoln Laboratory Journal, 15, 23-36(2005).
[10] [10] Dumanis D. Airbne Optical Systems Testbed(AOSTB)[R]. US: MIT Lincoln Labaty, 2016.
[11] Albota M A, Gurjar R, Mangognia A, et al. Contributed Review: Advanced three-dimensional laser radar imaging with the airborne optical systems testbed[J]. Review of Scientific Instruments, 89, 101502(2018).
[12] [12] Bahr T, Smith P. Airbne Geigermode lidar f largescale, highresolution widearea mapping[C]GI Fum, 2016, 1: 8593.
[13] [13] Yu A W, Krainak M A, Harding D J, et al. A 16beam nonscanning swath mapping laser altimeter instrument[C]Proc SPIE, 2013, 8599: 85990P.
[14] [14] Li M. Research on technologies of photon counting Lidar based on fiber optics [D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2017. (in Chinese)
[15] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km[J]. arXiv, 1904.10341(2019).
[16] Li Z P, Huang X, Jiang P Y, et al. Super-resolution single-photon imaging at 8.2 kilometers[J]. Optics Express, 28, 4076-4087(2020).
[17] [17] Qiu J. Airbne polarization lidar with 1.5 μm singlephoton detects [D]. Hefei: University of Science Technology of China, 2020. (in Chinese)
[18] [18] Shangguan M J. Laser remote sensing with 1.5 μm single photon detects [D]. Hefei: University of Science Technology of China, 2017. (in Chinese)
[19] Shin D, Xu F, Wong F N, et al. Computational multi-depth single-photon imaging[J]. Optics Express, 24, 253588(2016).
[20] Tobin R, Halimi A, McCarthy A, et al. Three-dimensional single-photon imaging through obscurants[J]. Optics Express, 27, 4590-4611(2019).
Get Citation
Copy Citation Text
Jingjing Guo, Xiaoyan Fei, Peng Ge, Anran Zhou, Lei Wang, Zhengqi Li, Lei Sheng. High-resolution three-dimensional imaging based on all-fiber photon-counting Lidar system[J]. Infrared and Laser Engineering, 2021, 50(7): 20210162
Category: Lasers & Laser optics
Received: Mar. 13, 2021
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: Peng Ge (gepeng_cas@qq.com)