Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1838(2022)

Functional Design of Hard Carbon and Its Application in Sodium-Ion Battery Anode

FENG Xin1, LI Ying1, LIU Mingquan1,2, LI Qiaojun1, ZHAO Yang1, BAI Ying1, and WU Chuan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(98)

    [1] [1] FENG X, BAI Y, LIU M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy Environ Sci, 2021, 14(4): 2036-2089.

    [2] [2] ZHANG K, WU F, WANG X, et al. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltage- tolerant and ion-conductive solid-state lithium metal batteries[J]. Adv Func Mater, 2022, 32(7): 2107764.

    [3] [3] WANG Z, FENG X, BAI Y, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium‐ion batteries[J]. Adv Energy Mater, 2021, 11(11): 2003854.

    [5] [5] WANG L, LU Y, LIU J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angew Chem Int Ed, 2013, 125(7): 2018-2021.

    [6] [6] SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. J Am Chem Soc, 2015, 137(7): 2658-2664.

    [8] [8] ZHU H, JIA Z, CHEN Y, et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir[J]. Nano Lett, 2013, 13(7): 3093-3100.

    [9] [9] HOU H, JING M, YANG Y, et al. Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries[J]. J Power Sources, 2015, 284(15): 227-235.

    [10] [10] ZHANG C, WANG X, LIANG Q, et al. Amorphous phosphorus/ nitrogen-doped graphene paper for ultrastable sodium-ion batteries[J]. Nano Lett, 2016, 16(3): 2054-2060.

    [11] [11] RUBIO S, MAA R R, ARAGN M J, et al. Superior electrochemical performance of TiO2 sodium-ion battery anodes in diglyme-based electrolyte solution[J]. J Power Sources, 2019, 432(31): 82-91.

    [12] [12] NI Q, DONG R, BAI Y, et al. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies[J]. Energy Storage Mater, 2020, 25(1): 903-911.

    [13] [13] WU F, DONG R, BAI Y, et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21335-21342.

    [14] [14] XIAO L, LU H, FANG Y, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Adv Energy Mater, 2018, 8(20): 1703238.

    [15] [15] LIU M, WU F, BAI Y, et al. Boosting sodium storage performance of hard carbon anodes by pore architecture engineering[J]. ACS Appl Mater Interfaces, 2021, 13(40): 47671-47683.

    [16] [16] LI Y, QIAN J, ZHANG M, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Adv Mater, 2020, 32(47): 2005802.

    [17] [17] LI Y, XU Y, WANG Z, et al. Stable carbon-selenium bonds for enhanced performance in tremella-like 2D chalcogenide battery anode[J]. Adv Energy Mater, 2018, 8(23): 1800927.

    [18] [18] KASKHEDIKAR N A, MAIER J. Lithium storage in carbon nanostructures[J]. Adv Mater, 2009, 21(25/26): 2664-2680.

    [19] [19] DOU X, HASA I, SAUREL D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Mater Today, 2019, 23: 87-104.

    [20] [20] SHINN J H. From coal to single-stage and 2-stage products-a reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196.

    [21] [21] FRANKLIN R E. Crystallite growth in graphitizing and nongraphitizing carbons[J]. Proc R Soc A, 1951, 209(1097): 196-218.

    [22] [22] BAN L L, CRAWFORD D, MARSH H. Lattice-resolution electron microscopy in structural studies of non-graphitizing carbons from polyvinylidene chloride (PVDC)[J]. J Appl Crystallography, 1975, 8(4): 415-420.

    [23] [23] TOWNSEND S J, LENOSKY T J, MULLER D A, et al. Negatively curved graphitic sheet model of amorphous carbon[J]. Phys Rev Lett, 1992, 69(6): 921-924.

    [24] [24] HARRIS P J F, TSANG S C. High-resolution electron microscopy studies of non-graphitizing carbons[J]. Philos Mag A, 1997, 76 (3): 667-677.

    [25] [25] TERZYK A P, FURMANIAK S, HARRIS P J, et al. How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?[J]. Phys Chem Chem Phys, 2007, 9(44): 5919-5927.

    [26] [26] STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J Electrochem Soc, 2000, 147(4): 1271-1273.

    [27] [27] NI J, HUANG Y, GAO L. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. J Power Sources, 2013, 223(1): 306-311.

    [28] [28] PIOTROWSKA A, KIERZEK K, RUTKOWSKI P, et al. Properties and lithium insertion behavior of hard carbons produced by pyrolysis of various polymers at 1 000 ℃[J]. J Anal Appl Pyrol, 2013, 102(3): 1-6.

    [29] [29] JIAN Z, BOMMIER C, LUO L, et al. Insights on the mechanism of na-ion storage in soft carbon anode[J]. Chem Mater, 2017, 29(5): 2314-2320.

    [30] [30] QI Y, LU Y, LIU L, et al. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization[J]. Energy Storage Mater, 2020, 26(4): 577-584.

    [31] [31] MIURA K, NAKAGAWA H, HASHIMOTO K. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate[J]. Carbon, 1995, 33(3): 275-282.

    [32] [32] YU K, ZHAO H, WANG X, et al. Hyperaccumulation route to Ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10544-10553.

    [33] [33] WU F, ZHANG M, BAI Y, et al. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12554-12561.

    [34] [34] BAI P, HE Y, ZOU X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Adv Energy Mater, 2018, 8(15): 1703217.

    [35] [35] CAO Y, XIAO L, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett, 2012, 12(7): 3783-3787.

    [36] [36] BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on na-ion storage in nongraphitizable carbon[J]. Nano Lett, 2015, 15(9): 5888-5892.

    [37] [37] ANJI REDDY M, HELEN M, GRO A, et al. Insight into sodium insertion and the storage mechanism in hard carbon[J]. ACS Energy Letters, 2018, 3(12): 2851-2857.

    [38] [38] ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Adv Energy Mater, 2016, 6(1): 1501588.

    [39] [39] KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Adv Func Mater, 2011, 21(20): 3859-3867.

    [40] [40] DING J, WANG H, LI Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015.

    [41] [41] WANG S, XIA L, YU L, et al. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Adv Energy Mater, 2016, 6(7): 1502217.

    [42] [42] ZHANG X, DONG X, QIU X, et al. Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries[J]. J Power Sources, 2020, 476(11): 228550.

    [43] [43] LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Lett, 2014, 14(4): 2225-2229.

    [44] [44] ZHENG Y, WANG Y, LU Y, et al. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode[J]. Nano Energy, 2017, 39(9): 489-498.

    [45] [45] QIU S, XIAO L, SUSHKO M L, et al. Manipulating adsorption- insertion mechanisms in nanostructured carbon materials for high- efficiency sodium ion storage[J]. Adv Energy Mater, 2017, 7(17): 1700403.

    [46] [46] ZHENG Y, LU Y, QI X, et al. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode[J]. Energy Storage Mater, 2019, 18(3): 269-279.

    [47] [47] QI Y, LU Y, DING F, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-Ion batteries[J]. Angew Chem Int Ed, 2019, 58(13): 4361-4365.

    [48] [48] JIN Q, WANG K, LI W, et al. Designing a slope-dominated hybrid nanostructure hard carbon anode for high-safety and high-capacity Na-ion batteries[J]. J Mater Chem A, 2020, 8(43): 22613-22619.

    [49] [49] XIAO L, CAO Y, HENDERSON W A, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19(1): 279-288.

    [50] [50] YUAN G, LIU D, FENG X, et al. 3D carbon networks: Design and applications in sodium ion batteries[J]. Chempluschem, 2021, 86(8): 1135-1161.

    [51] [51] HOU H, BANKS C E, JING M, et al. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Adv Mater, 2015, 27(47): 7861-7866.

    [52] [52] FU L, TANG K, SONG K, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3): 1384-1389.

    [53] [53] WANG Z, WANG X, BAI Y, et al. Developing an interpenetrated porous and ultrasuperior hard-carbon anode via a promising molten-salt evaporation method[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2481-2489.

    [54] [54] ZHOU X, ZHU X, LIU X, et al. Ultralong cycle life sodium-ion battery anodes using a graphene-templated carbon hybrid[J]. J Phys Chem C, 2014, 118(39): 22426-22431.

    [55] [55] LU P, SUN Y, XIANG H, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(8): 1702434.

    [56] [56] TANG K, FU L, WHITE R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv Energy Mater, 2012, 2(7): 873-877.

    [57] [57] LUO J M, SUN Y G, GUO S J, et al. Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries[J]. Mater Chem Front, 2020, 4(8): 2283-2306.

    [58] [58] NI D, SUN W, WANG Z, et al. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life[J]. Adv Energy Mater, 2019, 9(19): 1900036.

    [59] [59] YUE L, XU W, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Appl Surface Sci, 2021, 546: 149168.

    [60] [60] MENG Q, LU Y, DING F, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612.

    [61] [61] YU K, WANG X, YANG H, et al. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries[J]. J Energy Chem, 2021, 55(7): 499-508.

    [62] [62] YANG J, WANG X, DAI W, et al. From micropores to ultra- micropores inside hard carbon: toward enhanced capacity in room-/ low-temperature sodium-ion storage[J]. Nanomicro Lett, 2021, 13(1): 1-14.

    [63] [63] WANG Y, NIU P, LI J, et al. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries[J]. Energy Storage Mater, 2021, 34: 436-460.

    [64] [64] LI L, ZHENG Y, ZHANG S, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy Environ Sci, 2018, 11(9): 2310-2340.

    [65] [65] MUOZ-MRQUEZ M , SAUREL D, GMEZ-CMER J L, et al. Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation[J]. Adv Energy Mater, 2017, 7(20): 1700463.

    [66] [66] LIU J, ZHANG Y, ZHANG L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Adv Mater, 2019, 31(24): 1901261.

    [67] [67] FENG X, BAI Y, ZHENG L, et al. Effect of different nitrogen configurations on sodium storage properties of carbon anodes for sodium ion batteries[J]. ACS Appl Mater Interfaces, 2021, 13(47): 56285-56295.

    [68] [68] LI Y, YUAN Y, BAI Y, et al. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Adv Energy Mater, 2018, 8(18): 1702781.

    [69] [69] WU F, LIU L, YUAN Y, et al. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage[J]. ACS Appl Mater Interfaces, 2018, 10(32): 27030-27038.

    [70] [70] AGRAWAL A, JANAKIRAMAN S, BISWAS K, et al. Understanding the improved electrochemical performance of nitrogen- doped hard carbons as an anode for sodium ion battery[J]. Electroch Acta, 2019, 317(9): 164-172.

    [71] [71] JIN H, FENG X, LI J, et al. Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance [J]. Angew Chem Int Ed, 2019, 58(8): 2397-2401.

    [72] [72] YANG J, ZHOU X, WU D, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Adv Mater, 2017, 29(6): 1604108.

    [73] [73] CHEN C, LI G, ZHU J, et al. In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries[J]. Carbon, 2017, 120(8): 380-391.

    [74] [74] XU D, CHEN C, XIE J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Adv Energy Mater, 2016, 6(6): 1501929.

    [75] [75] NIU J, LIANG J, SHAO R, et al. Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors[J]. Nano Energy, 2017, 41(11): 285-292.

    [76] [76] HAN F, LV T, SUN B, et al. In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batteries[J]. RSC Advances, 2017, 7(49): 30699-30706.

    [77] [77] WANG M, YANG Y, YANG Z, et al. Sodium-ion batteries: improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping[J]. Adv Sci, 2017, 4(4): 1600468.

    [78] [78] AN H, LI Y, GAO Y, et al. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries[J]. Carbon, 2017, 116(5): 338-346.

    [79] [79] ZHAO H, YE J, SONG W, et al. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon[J]. ACS Appl Mater Interfaces, 2020, 12(6): 6991-7000.

    [80] [80] XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Adv Mater, 2020, 32(21): 2000447.

    [81] [81] MATEI GHIMBEU C, GRKA J, SIMONE V, et al. Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects[J]. Nano Energy, 2018, 44(2): 327-335.

    [82] [82] XIE H, WU Z, WANG Z, et al. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries[J]. J Mater Chem A, 2020, 8(7): 3606-3612.

    [83] [83] SUN D, LUO B, WANG H, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64(10): 103937.

    [84] [84] SUN F, WANG H, QU Z, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms[J]. Adv Energy Mater, 2020, 11(1): 2002981.

    [85] [85] LU H, CHEN X, JIA Y, et al. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries[J]. Nano Energy, 2019, 64(10): 103903.

    [86] [86] LUO K, WANG D, CHEN D, et al. Solid electrolyte interphase composition regulation via coating AlF3 for a high-performance hard carbon anode in sodium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(8): 8242-8251.

    [87] [87] LI D, ZHANG J, AHMED S M, et al. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions[J]. J Colloid Interface Sci, 2020, 574(8): 174-181.

    [88] [88] ZHANG S W, LV W, QIU D, et al. An ion-conducting SnS-SnS2 hybrid coating for commercial activated carbons enabling their use as high performance anodes for sodium-ion batteries[J]. J Mater Chem A, 2019, 7(17): 10761-10768.

    [89] [89] XIE F, XU Z, JENSEN A C S, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Adv Func Mater, 2019, 29(24): 1901072.

    [90] [90] LIN Q, ZHANG J, KONG D, et al. Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries[J]. Adv Energy Mater, 2019, 9(1): 1803078.

    [91] [91] LI Y, XU S, WU X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. J Mater Chem A, 2015, 3(1): 71-77.

    [92] [92] HE X X, ZHAO J H, LAI W H, et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2021, 13(37): 44358-44368.

    [93] [93] ZHENG G, LIN Q, MA J, et al. Ultrafast presodiation of graphene anodes for high-efficiency and high-rate s odium-ion storage[J]. InfoMat, 2021, 12(1): 1445-1454.

    [94] [94] LI Y, NI Q, ZHANG M, et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries[J]. Adv Mater, 2020, 32(47): 2005802.

    [95] [95] WANG Z, YANG H, LIU Y, et al. Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries[J]. Small, 2020, 16(51): 2003268.

    [96] [96] NATALIA V, SEUNG T. Recent advances in electrode materials with anion redox chemistry for sodium-ion batteries[J]. Energy Mater Adv, 2021, 2021(1): 9819521.

    [97] [97] ZHU N, ZHANG K, WU F, et al. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries[J]. Energy Mater Adv, 2021, 2021(1): 9204217.

    [98] [98] ZHANG R, RAVEENDRAN V, HE Y, et al. A poriferous nanoflake-assembled flower-like Ni5P4 anode for high performance sodium-ion batteries[J]. Energy Mater Adv, 2021, 2021(1): 2124862.

    [99] [99] DONG R, ZHENG L, BAI Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Adv Mater, 2021, 33(36): 2008810.

    [100] [100] LI Y, LIU M, FENG X, et al. How can the electrode influence the formation of the solid electrolyte interface?[J]. ACS Energy Lett, 2021, 6(9): 3307-3320.

    Tools

    Get Citation

    Copy Citation Text

    FENG Xin, LI Ying, LIU Mingquan, LI Qiaojun, ZHAO Yang, BAI Ying, WU Chuan. Functional Design of Hard Carbon and Its Application in Sodium-Ion Battery Anode[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1838

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 28, 2021

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics