Acta Optica Sinica, Volume. 42, Issue 11, 1134002(2022)
Capillary X-Ray Lens Technology and Its Applications
[1] Schriber E A, Paley D W, Bolotovsky R et al. Chemical crystallography by serial femtosecond X-ray diffraction[J]. Nature, 601, 360-365(2022).
[2] Lewis J A. Cortes F J Q, Liu Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography[J]. Nature Materials, 20, 503-510(2021).
[3] Heeg K P, Kaldun A, Strohm C et al. Coherent X-ray optical control of nuclear excitons[J]. Nature, 590, 401-404(2021).
[4] di Stefano R, Berndtsson J, Urquhart R et al. A possible planet candidate in an external galaxy detected through X-ray transit[J]. Nature Astronomy, 5, 1297-1307(2021).
[5] Günther S. Reinke P Y A, Fernandez-García Y, et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease[J]. Science, 372, 642-646(2021).
[6] Jin G, Zhang C, Li L H et al. Fabrication and performance testing of angel lobster-eye X-ray micro-pore optics[J]. Acta Optica Sinica, 41, 0634001(2021).
[7] Yang X, Li J Q, Cao J F et al. Time-resolved X-ray ferromagnetic resonance method based on synchrotron radiation[J]. Acta Optica Sinica, 41, 1534002(2021).
[8] Sanchez J J, Malinowski P, Mutch J et al. The transport-structural correspondence across the nematic phase transition probed by elasto X-ray diffraction[J]. Nature Materials, 20, 1519-1524(2021).
[9] Lü H Y, Zou J, Zhao J T et al. Review on development of nano-computed tomography imaging technology[J]. Laser & Optoelectronics Progress, 57, 140001(2020).
[10] Lorenzo M, Clark S J, Sebastian M et al. Dynamic multicontrast X-ray imaging method applied to additive manufacturing[J]. Physical Review Letters, 127, 215503(2021).
[11] Czajka A, Armes S P. Time-resolved small-angle X-ray scattering studies during aqueous emulsion polymerization[J]. Journal of the American Chemical Society, 143, 1474-1484(2021).
[12] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).
[13] Huang Q S, Kozhevnikov I V, Sokolov A et al. Theoretical analysis and optimization of highly efficient multilayer-coated blazed gratings with high fix-focus constant for the tender X-ray region[J]. Optics Express, 28, 821-845(2020).
[14] Sleator C C, Phlips B F, Marc C et al. A custom low-noise silicon photodiode detector designed for use with X-ray capillary optics[J]. IEEE Transactions on Nuclear Science, 68, 2249-2256(2021).
[15] Han Y M, Fu Y G, Ouyang M Z et al. X-ray focusing characteristics of meridional lobster-eye lens[J]. Laser & Optoelectronics Progress, 58, 0634001(2021).
[16] Snigirev A, Kohn V, Snigireva I et al. A compound refractive lens for focusing high-energy X-rays[J]. Nature, 384, 49-51(1996).
[17] Kohn V, Snigireva I, Snigirev A. Diffraction theory of imaging with X-ray compound refractive lens[J]. Optics Communications, 216, 247-260(2003).
[18] Lengeler B, Schroer C G, Richwin M et al. A microscope for hard X-rays based on parabolic compound refractive lenses[J]. Applied Physics Letters, 74, 3924-3926(1999).
[19] Luo J Y, Guo Z, Huang H et al. Synchrotron radiation research on diffraction efficiency of multilayer coated grating[J]. Acta Optica Sinica, 41, 1405001(2021).
[20] Lai B, Yun W B, Legnini D et al. Hard X-ray phase zone plate fabricated by lithographic techniques[J]. Applied Physics Letters, 61, 1877-1879(1992).
[21] Huang Q S. Medvedev V, van de Kruijs R, et al. Spectral tailoring of nanoscale EUV and soft X-ray multilayer optics[J]. Applied Physics Reviews, 4, 011104(2017).
[22] Gao Y Z, Wu L J, Lu W E et al. Design of hard X-ray Fresnel zone plates based on rigorous coupled wave theory[J]. Acta Optica Sinica, 41, 1111002(2021).
[23] Wang Z S, Liao Y Y, Shen Z X et al. Development of imaging X-ray telescopes at Tongji university[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 5, 044010(2019).
[24] Yamauchi K, Mimura H, Kimura T et al. Single-nanometer focusing of hard X-rays by Kirkpatrick-Baez mirrors[J]. Journal of Physics: Condensed Matter, 23, 394206(2011).
[25] Sun T X, Ding X L. Determination of the properties of a polycapillary X-ray lens[J]. X-ray Spectrometry, 35, 120-124(2006).
[26] Zwanenburg M J. Bongaerts J H H, Peters J F, et al. Focusing of coherent X-rays in a tapered planar waveguide[J]. Physica B: Condensed Matter, 283, 285-288(2000).
[27] Bergemann C. Keymeulen H, van der Veen J F. Focusing X-ray beams to nanometer dimensions[J]. Physical Review Letters, 91, 204801(2003).
[28] Dabagov S B, Marcelli A, Cappuccio G et al. On propagation of X-rays in capillary channels[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 187, 169-177(2002).
[29] Braig C, Sokolov A, Wilks R G et al. Polycapillary-boosted instrument performance in the extreme ultraviolet regime for inverse photoemission spectroscopy[J]. Optics Express, 25, 31840-31852(2017).
[30] Fujii G, Ukibe M, Shiki S et al. Development of an energy-dispersive X-ray spectroscopy analyzer employing superconducting tunnel junction array detectors toward nanometer-scale elemental mapping[J]. X-ray Spectrometry, 46, 325-329(2017).
[31] Lei W, Gibson W M. MacDonald C A. Potential of polycapillary optics for hard X-ray medical imaging applications[J]. Proceedings of SPIE, 3767, 102-112(1999).
[32] Bilderback D H, Hoffman S A, Thiel D J. Nanometer spatial resolution achieved in hard X-ray imaging and Laue diffraction experiments[J]. Science, 263, 201-203(1994).
[33] Kumakhov M A, Komarov F F. Multiple reflection from surface X-ray optics[J]. Physics Reports, 191, 289-350(1990).
[34] Sun T X, Ding X L. Measurements of energy dependence of properties of polycapillary X-ray lens by using organic glass as a scatterer[J]. Journal of Applied Physics, 97, 124904(2005).
[35] Sun T X, Liu Z G, Ding X L[M]. Properties of capillary X-ray optics and its applications, 23-106(2009).
[36] Sun T X, Ding X L. Confocal X-ray technology based on capillary X-ray optics[J]. Reviews in Analytical Chemistry, 34, 45-59(2015).
[37] MacDonald C A. Structured X-ray optics for laboratory-based materials analysis[J]. Annual Review of Materials Research, 47, 115-134(2017).
[38] Wobrauschek P. Total reflection X-ray fluorescence analysis: a review[J]. X-ray Spectrometry, 36, 289-300(2007).
[39] Bilderback D H. Review of capillary X-ray optics from the 2nd international capillary optics meeting[J]. X-ray Spectrometry, 32, 195-207(2003).
[40] Hampai D, Dabagov S B, Cappuccio G et al. X-ray propagation through hollow channel: PolyCAD-a ray tracing code[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 244, 481-488(2006).
[41] Rindby A, Engström P, Larsson S et al. Microbeam technique for energy dispersive X-ray fluorescence[J]. X-ray Spectrometry, 18, 109-112(1989).
[42] Janssens K, Vittiglio G, Deraedt I et al. Use of microscopic XRF for non-destructive analysis in art and archaeometry[J]. X-ray Spectrometry, 29, 73-91(2000).
[43] Akira O, Tomoyasu N, Shinobu O et al. Laboratory-size X-ray microscope using Wolter mirror optics and an electron-impact X-ray source[J]. The Review of Scientific Instruments, 92, 093704(2021).
[44] Thiel D J, Bilderback D H, Lewis A. Production of intense micrometer-sized X-ray beams with tapered glass monocapillaries[J]. Review of Scientific Instruments, 64, 2872-2878(1993).
[45] Thiel D J, Bilderback D H, Aaron L et al. Submicron concentration and confinement of hard X-rays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 317, 597-600(1992).
[46] Sun X P, Zhang X Y, Zhu Y et al. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 13-17(2018).
[47] Wang X Y, Li Y D, Luo H et al. Study on the manufacturing process and transmission performance of a nested tapered single capillary X-ray lens[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 947, 162762(2019).
[48] Hoffman S A, Thiel D J, Bilderback D H. Developments in tapered monocapillary and polycapillary glass X-ray concentrators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 347, 384-389(1994).
[49] Balaic D X, Nugent K A, Barnea Z et al. Focusing of X-rays by total external reflection from a paraboloidally tapered glass capillary[J]. Journal of Synchrotron Radiation, 2, 296-299(1995).
[50] Zhou P, Cui J D, Du Z L et al. High-quality quasi-parallel X-ray beam obtained by a parabolic monocapillary X-ray lens with a square beam stop[J]. Journal of X-ray Science and Technology, 30, 261-273(2022).
[51] Zeng X H, Duewer F, Feser M et al. Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes[J]. Applied Optics, 47, 2376-2381(2008).
[52] [52] Bilderback DH, Huang R. X-ray tests of microfocusing mono-capillary optic for protein crystallography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment, 2001, 467/468: 970- 973.
[53] Huang R, Bilderback D H. Simulation of microfocused image size from a one-bounce glass capillary[J]. Nuclear Instruments and Methods in Physics Research A, 467, 978-981(2001).
[54] Huang R, Bilderback D H. Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits[J]. Journal of Synchrotron Radiation, 13, 74-84(2006).
[55] Jiang B W, Liu Z G, Sun X P et al. Single bounce ellipsoidal glass monocapillary condenser for X-ray nano-imaging[J]. Optics Communications, 398, 91-94(2017).
[56] Tao F, Wang Y D, Ren Y Q et al. Design and detection of ellipsoidal mono-capillary for X-ray nano-imaging[J]. Acta Optica Sinica, 37, 1034002(2017).
[57] Zhang S, Pan K, Wang Z et al. Simulation of optical properties of ellipsoidal monocapillary X-ray optics with inner-surface imperfections[J]. Optics Communications, 493, 127028(2021).
[58] Kuczumow A, Larsson S. Scheme for X-ray tracing in capillary optics[J]. Applied Optics, 33, 7928-7932(1994).
[59] Tack P, Schoonjans T, Bauters S et al. An X-ray ray tracing simulation code for mono- and polycapillaries: description, advances and application[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 173, 105974(2020).
[60] Motoyama H, Saito T, Mimura H. Error analysis of ellipsoidal mirrors for soft X-ray focusing by wave-optical simulation[J]. Japanese Journal of Applied Physics, 53, 022503(2014).
[61] Kukhlevsky S V, Flora F, Marinai A et al. Wave optics treatment of X-rays passing through tapered capillary guides[J]. X-ray Spectrometry, 29, 354-359(2000).
[62] Zhou P, Ma X R, Zhang S et al. Application of particle swarm optimization in the design of a mono-capillary X-ray lens[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 953, 163077(2020).
[63] Perez R D. Recent development in homemade X-ray polycapillary optic and its application to topics of X-ray optics[C]. AIP Conference Proceedings, 1437, 121-125(2012).
[64] Snigirev A, Bjeoumikhov A, Erko A et al. Submicrometer hard X-ray focusing using a single-bounce ellipsoidal capillary combined with a Fresnel zone plate[J]. Journal of Synchrotron Radiation, 14, 227-228(2007).
[65] Yamaguchi G, Motoyama H, Owada S et al. Copper electroforming replication process for soft X-ray mirrors[J]. Review of Scientific Instruments, 92, 123106(2021).
[66] Hirsch G. Metal capillary optics: novel fabrication methods and characterization[J]. X-ray Spectrometry, 32, 229-238(2003).
[67] Yuji M, Tadaaki O, Mitsunobu M. Soft-X-ray hollow fiber optics with inner metal coating[J]. Applied Optics, 44, 6193-6196(2005).
[68] Wang Y B, Li Y L, Shao S K et al. Enhancement of properties of high-density material coated glass monocapillary X-ray condenser based on atomic layer deposition[J]. Optics Communications, 464, 125544(2020).
[69] Mimura H, Takei Y, Kume T et al. Fabrication of a precise ellipsoidal mirror for soft X-ray nanofocusing[J]. Review of Scientific Instruments, 89, 093104(2018).
[70] Takeo Y, Suzuki A, Motoyama H et al. Soft X-ray nanobeam formed by an ellipsoidal mirror[J]. Applied Physics Letters, 116, 121102(2020).
[71] Kume T, Takei Y, Egawa S et al. Development of electroforming process for soft X-ray ellipsoidal mirror[J]. Review of Scientific Instruments, 90, 021718(2019).
[72] Kwon S, Lim J H, Namba Y et al. Precise measurement of inner diameter of mono-capillary optic using X-ray imaging technique[J]. Journal of X-ray Science and Technology, 26, 263-272(2018).
[73] Chon K S. Measurement of roundness for an X-ray mono-capillary optic by using computed tomography[J]. Journal of the Korean Physical Society, 74, 901-906(2019).
[74] Wang Z, Pan K, Du Z L et al. Improvements in micro-CT method for characterizing X-ray monocapillary optics[J]. Optics Communications, 504, 127474(2022).
[75] Zhang S, Pan K, Zhou P et al. Characterizing the inner surface of parabolic monocapillary with contrast-enhanced micro-CT technology and ray-tracing computing method[J]. Optics Communications, 475, 126182(2020).
[76] Zhang X Y, Wang Y B, Li Y F et al. Application of confocal X-ray fluorescence based on capillary X-ray optics in nondestructively measuring the inner diameter of monocapillary optics[J]. Optics Communications, 436, 38-41(2019).
[77] Zhang X Y, Wang Y B, Li Y F et al. Measurement of the inner diameter of monocapillary with confocal X-ray scattering technology based on capillary X-ray optics[J]. Applied Optics, 58, 1291-1295(2019).
[78] Shao S K, Li H Q, Tao F et al. A passive characterization method of the single-bounce ellipsoidal capillary for the full field transmission X-ray microscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1014, 165735(2021).
[79] Huang X J, Nazaretski E, Xu W H et al. Metrology of a focusing capillary using optical ptychography[J]. Sensors, 20, 6462(2020).
[80] Wang Y B, Zhang X Y, Li Y F et al. Measuring the average slope error of a single-bounce ellipsoidal glass monocapillary X-ray condenser based on an X-ray source with an adjustable source size[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 934, 36-40(2019).
[81] Li Y D, Lin X Y, Tan Z Y et al. Measurement of inner surface roughness of capillary by an X-ray reflectivity method[J]. Chinese Physics B, 20, 040702(2011).
[82] Yashchuk V V, Gullikson E M, Howells M R et al. Surface roughness of stainless-steel mirrors for focusing soft X rays[J]. Applied Optics, 45, 4833-4842(2006).
[83] Matsuyama S, Inoue T, Yamada J et al. Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors[J]. Scientific Reports, 8, 17440(2018).
[84] Kazimirov A, Bilderback D H, Huang R et al. Microbeam high-resolution diffraction and X-ray standing wave methods applied to semiconductor structures[J]. Journal of Physics D: Applied Physics, 37, L9-L12(2004).
[85] Sirenko A A, Kazimirov A, Cornaby S et al. Microbeam high angular resolution X-ray diffraction in InGaN/GaN selective-area-grown ridge structures[J]. Applied Physics Letters, 89, 181926(2006).
[86] Schmidt C, Rickers K, Bilderback D H et al. In situ synchrotron-radiation XRF study of REE phosphate dissolution in aqueous fluids to 800 ℃[J]. Lithos, 95, 87-102(2007).
[87] Tao F, Feng B G, Deng B et al. Micro X-ray fluorescence imaging based on ellipsoidal single-bounce mono-capillary[J]. Spectroscopy and Spectral Analysis, 40, 2011-2015(2020).
[88] Sun X P, Zhang X Y, Wang Y B et al. Performance of assembled X-ray optics consisted of a polycapillary X-ray optics and a monocapillary X-ray optics for micro X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 165, 105770(2020).
[89] Lamb J S, Cornaby S, Andresen K et al. Focusing capillary optics for use in solution small-angle X-ray scattering[J]. Journal of Applied Crystallography, 40, 193-195(2007).
[90] Woll A R, Mass J, Bisulca C et al. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source[J]. Applied Physics A, 83, 235-238(2006).
[91] Wilke M, Appel K, Vincze L et al. A confocal set-up for micro-XRF and XAFS experiments using diamond-anvil cells[J]. Journal of Synchrotron Radiation, 17, 669-675(2010).
[92] Zhu Y, Wang Y B, Sun T X et al. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics[J]. Applied Radiation and Isotopes, 137, 172-176(2018).
[93] Winarski R P, Holt M V, Rose V et al. A hard X-ray nanoprobe beamline for nanoscale microscopy[J]. Journal of Synchrotron Radiation, 19, 1056-1060(2012).
[94] Li F Z, Liu Z G, Sun T X. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics[J]. The Review of Scientific Instruments, 87, 093106(2016).
[95] Li F Z, Liu Z G, Sun T X et al. Focal construct geometry for high intensity energy dispersive X-ray diffraction based on X-ray capillary optics[J]. The Journal of Chemical Physics, 144, 104201(2016).
[96] Beloglazov V I, Langhoff N, Tuchin V V et al. Technologies of manufacturing polycapillary optics for X-ray engineering[J]. Journal of X-ray Science and Technology, 13, 179-183(2005).
[97] Vincze L, Wei F, Proost K et al. Suitability of polycapillary optics for focusing of monochromatic synchrotron radiation as used in trace level micro-XANES measurements[J]. Journal of Analytical Atomic Spectrometry, 17, 177-182(2002).
[98] Kanngießer B, Kemf N, Malzer W. Spectral and lateral resolved characterisation of X-ray microbeams[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 198, 230-237(2002).
[99] Sun T X, Ding X L. Study on the measurement of properties of polycapillary X-ray lens[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 226, 651-658(2004).
[100] Gherase M R, Vargas A F. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 395, 5-12(2017).
[101] Sun X P, Zhang X Y, Shao S K et al. A method quickly to measure the size of the confocal volume of confocal X-ray instrument[J]. Spectroscopy and Spectral Analysis, 41, 3493-3497(2021).
[102] Bzheumikhov K A, Margushev Z C. Savo ski Y V. Optimizing the process for fabricating microstructured optical fiber[J]. Journal of Optical Technology, 84, 122-129(2017).
[103] Peng S, Liu Z G, Sun T X et al. Adjustment of confocal configuration for capillary X-ray optics with a liquid secondary target[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 729, 565-568(2013).
[104] Zymakova A, Prasa K K, Picchiotti A et al. Implementation of a crossed-slit system for fast alignment of sealed polycapillary X-ray optics[J]. Journal of Synchrotron Radiation, 27, 1730-1733(2020).
[105] Yan Y M, Ding X L. An investigation of X-ray fluorescence analysis with an X-ray focusing system (X-ray lens)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 82, 121-124(1993).
[106] Ding X L, He Y J, Yan Y M. X-ray source for X-ray microfluorescence using a monolithic X-ray focusing lens combined with aperture optics[J]. X-ray Spectrometry, 26, 374-379(1997).
[107] Peng S, Liu Z G, Sun T X et al. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF[J]. Applied Radiation and Isotopes, 90, 84-88(2014).
[108] Sun T X, Liu Z G, Li Y D et al. Quantitative analysis of single aerosol particles using polycapillary X-ray optics[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1194-1197(2009).
[109] Nikitina S V, Shcherbakov A S, Ibraimov N S. X-ray fluorescence analysis on the base of polycapillary Kumakhov optics[J]. Review of Scientific Instruments, 70, 2950-2956(1999).
[110] Pantojas V M, Kovantsev V E, Pant J et al. A polycapillary-based X-ray optical system for diffraction applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 333, 607-617(1993).
[111] Kovantsev V E, Pant J, Pantojas V et al. Capillary-based X-ray collector/collimator for diffraction applications[J]. Applied Physics Letters, 62, 2905-2907(1993).
[112] Bjeoumikhov A, Bjeoumikhova S, Langhoff N et al. Polycapillary optics for energy dispersive micro X-ray diffractometry[J]. Applied Physics Letters, 86, 144102(2005).
[113] Liu H H, Liu Z G, Sun T X et al. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 723, 1-4(2013).
[114] Sun T X, Liu Z G, Ding X L. An energy dispersive micro X-ray diffractometer based on a combined system of polycapillary optics[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262, 153-156(2007).
[115] Sun T X, Zhang M L, Liu Z G et al. Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging[J]. Journal of Synchrotron Radiation, 16, 116-118(2009).
[116] Sun T X. MacDonald C A. Monochromatic X-ray imaging using a combination of doubly curved crystal and polycapillary X-ray lens[J]. Journal of X-ray Science and Technology, 23, 141-146(2015).
[117] Wilkins S W, Gureyev T E, Gao D et al. Phase-contrast imaging using polychromatic hard X-rays[J]. Nature, 384, 335-338(1996).
[118] Pyakurel U, Sun W Y, Cheung P et al. Phase and dark-field imaging with mesh-based structured illumination and polycapillary optics[J]. Medical Physics, 48, 6642-6657(2021).
[119] Bashir S, Tahir S. MacDonald C A, et al. Phase imaging using focused polycapillary optics[J]. Optics Communications, 369, 28-37(2016).
[120] Sowa K M, Korecki P. X-ray tomography with multiple ultranarrow cone beams[J]. Optics Express, 28, 23223-23238(2020).
[121] Korecki P, Roszczynialski T P, Sowa K M. Simulation of image formation in X-ray coded aperture microscopy with polycapillary optics[J]. Optics Express, 23, 8749-8761(2015).
[122] Sowa K M, Last A, Korecki P. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics[J]. Scientific Reports, 7, 44944(2017).
[123] Korecki P, Sowa K M, Jany B R et al. Defect-assisted hard-X-ray microscopy with capillary optics[J]. Physical Review Letters, 116, 233902(2016).
[124] Dᶏbrowski K M, Dul D T, Wróbel A et al. X-ray microlaminography with polycapillary optics[J]. Applied Physics Letters, 102, 224104(2013).
[125] Sowa K M, Jany B R, Paweł K. Multipoint-projection X-ray microscopy[J]. Optica, 5, 577-582(2018).
[126] Baumbach S, Kanngießer B, Malzer W et al. A laboratory 8 keV transmission full-field X-ray microscope with a polycapillary as condenser for bright and dark field imaging[J]. The Review of Scientific Instruments, 86, 083708(2015).
[127] Feng B G, Tao F, Yang Y M et al. X-ray fluorescence microtomography based on polycapillary-focused X-rays from laboratory source[J]. Nuclear Science and Techniques, 29, 85(2018).
[128] Kang S, Gweon D G, Toon K H et al. Parallel X-ray imaging for improving spatial resolution[J]. Journal of the Korean Physical Society, 58, 1573-1576(2011).
[129] Sun X P, Liu Z G, Sun T et al. Application of polycapillary X-ray lens to eliminate both the effect of X-ray source size and scatter of the sample in laboratory tomography[J]. Chinese Optics Letters, 13, 093401(2015).
[130] Cherepennikov Y M, Hampai D, Azzutti C et al. Polycapillary-based 3D X-ray imaging of porous organic materials[J]. Journal of Instrumentation, 13, C07003(2018).
[131] Marchitto L, Hampai D, Dabagov S B et al. GDI spray structure analysis by polycapillary X-ray μ-tomography[J]. International Journal of Multiphase Flow, 70, 15-21(2015).
[132] Vernekohl D, Ahmad M, Dai X J et al. Reduced acquisition time for L-shell X-ray fluorescence computed tomography using polycapillary X-ray optics[J]. Medical Physics, 46, 5696-5702(2019).
[133] Proost K, Vincze L, Janssens K et al. Characterization of a polycapillary lens for use in micro-XANES experiments[J]. X-ray Spectrometry, 32, 215-222(2003).
[134] Sun T, Xie Y N, Liu Z G et al. Application of a combined system of polycapillary X-ray lens and toroidal mirror in micro-X-ray-absorption fine-structure facility[J]. Journal of Applied Physics, 99, 094907(2006).
[135] Sun T X, Liu Z G, He B et al. Performances of synchrotron radiation microbeam focused by monolithic half focusing polycapillary X-ray lens[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 574, 285-288(2007).
[136] Taguchi T, Xiao Q F, Harada J. A new approach for in-laboratory XAFS equipment[J]. Journal of Synchrotron Radiation, 6, 170-171(1999).
[137] Sun T, Liu Z G, Ding X L. Characterization of a polycapillary focusing X-ray lens for application in spatially resolved EXAFS experiments[J]. Chemical Physics Letters, 439, 412-414(2007).
[138] Chen J, Zhang H, Tomov I V et al. Transient structures and kinetics of the ferrioxalate redox reaction studied by time-resolved EXAFS, optical spectroscopy, and DFT[J]. The Journal of Physical Chemistry. A, 111, 9326-9335(2007).
[139] Chen J, Zhang H, Tomov I V et al. Photochemistry and electron-transfer mechanism of transition metal oxalato complexes excited in the charge transfer band[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 15235-15240(2008).
[140] Sun T X, Peng S, Liu Z G et al. Performance of polycapillary X-ray optics for confocal energy-dispersive small-angle X-ray scattering[J]. Journal of Applied Crystallography, 46, 1880-1883(2013).
[141] Li F Z, Liu Z G, Sun T X. Authentication of vegetable oils by confocal X-ray scattering analysis with coherent/incoherent scattered X-rays[J]. Food Chemistry, 210, 435-441(2016).
[142] Li F Z, Liu Z G, Sun T X et al. A confocal three-dimensional micro X-ray scattering technology based on Rayleigh to Compton ratio for identifying materials with similar density and different weight percentages of low-Z elements[J]. Radiation Physics and Chemistry, 112, 163-168(2015).
[143] Li F Z, Liu Z G, Sun T X et al. Confocal three-dimensional micro X-ray scatter imaging for non-destructive detecting foreign bodies with low density and low-Z materials in food products[J]. Food Control, 54, 120-125(2015).
[144] Zhang X Y, Wang Y B, Shao S K et al. Development of a new X-ray scattering instrument based on two polycapillary X-ray optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 984, 164647(2020).
[145] Figueroa R G, Valente M, Guarda J et al. OXIRIS project: development of a new XRF device for the simultaneous detection and treatment of cancer[J]. X-ray Spectrometry, 1171729(2021).
[146] Yan H G, Ma X Y, Sun W Y et al. Monte Carlo dosimetry modeling of focused kV X-ray radiotherapy of eye diseases with potential nanoparticle dose enhancement[J]. Medical Physics, 45, 4720-4733(2018).
[147] Yan H G, Sun W Y, Mruthyunjaya P et al. Dosimetry modeling of focused kV X-ray radiotherapy for wet age-related macular degeneration[J]. Medical Physics, 47, 5123-5134(2020).
[148] Gherase M R, Al-Hamdani S. Improvements and reproducibility of an optimal grazing-incidence position method to L-shell X-ray fluorescence measurements of lead in bone and soft tissue phantoms[J]. Biomedical Physics & Engineering Express, 4, 065024(2018).
[149] Forber R A, Chen Z W, Menon R et al. Collimated point-source X-ray nanolithography[J]. Journal of Vacuum Science & Technology, B. Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena, 20, 2984-2990(2002).
[150] Janssens K, Proost K, Falkenberg G. Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1637-1645(2004).
[151] Sun T X, Ding X L, Liu Z G et al. Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 76-80(2008).
[152] Choudhury S. Agyeman B D N, Woll A R, et al. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone[J]. Journal of Analytical Atomic Spectrometry, 32, 527-537(2017).
[153] Vincze L, Vekemans B, Brenker F E et al. Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging[J]. Analytical Chemistry, 76, 6786-6791(2004).
[154] Tsuji K, Nakano K, Ding X L. Development of confocal micro X-ray fluorescence instrument using two X-ray beams[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 549-553(2007).
[155] Peng S, Liu Z G, Sun T X et al. Spatially resolved in situ measurements of the ion distribution near the surface of electrode in a steady-state diffusion in an electrolytic tank with confocal micro X-ray fluorescence[J]. Analytical Chemistry, 86, 362-366(2014).
[156] Jiang B W, Zhu Y, Sun T X et al. Confocal three-dimensional micro X-ray fluorescence based on synchrotron radiation for mineral analysis[J]. Spectroscopy Letters, 50, 545-549(2017).
[157] Li Y F, Zhang X Y, Wang Y B et al. Quantitative analysis of the elemental composition of ion liquid with confocal X-ray fluorescence based on peak to background ratio[J]. Radiation Physics and Chemistry, 162, 168-171(2019).
[158] Ingerle D, Swies J, Iro M et al. A monochromatic confocal micro-X-ray fluorescence (μXRF) spectrometer for the lab[J]. Review of Scientific Instruments, 91, 123107(2020).
[159] Cappuccio G, Dabagov S B, Guglielmotti V et al. PolyCO in XRF analysis: fundamental parameter method applied for Japanese Buddhist scroll studies[J]. Radiation Physics and Chemistry, 188, 109660(2021).
[160] Sheng L X, Li Z L, Hua X J et al. Quantitative calculation of a confocal synchrotron radiation micro-X-ray fluorescence imaging technique and application on individual fluid inclusion[J]. Journal of Analytical Atomic Spectrometry, 36, 2353-2361(2021).
[161] Sun T X, Liu Z G, Li Y D et al. Size-resolved source apportionment of aerosol particles with a confocal micro X-ray fluorescence spectrometer[J]. Applied Spectroscopy, 65, 1398-1402(2011).
[162] Sun T X, Liu Z G, Li Y D et al. Quantitative analysis of single aerosol particles with confocal micro-X-ray fluorescence spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622, 295-297(2010).
[163] Sun T X, Liu H H, Liu Z G et al. Application of confocal technology based on polycapillary X-ray optics in three-dimensional diffraction scanning analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 323, 25-29(2014).
[164] Eba H, Nakamachi R, Kitakubo Y et al. Nondestructive analysis of depth distribution of materials by confocal X-ray diffraction[J]. Chemistry Letters, 47, 1545-1548(2018).
[165] Sun T X, Zhang M R, Ding X L et al. Characterization of polycapillary X-ray lens for application in confocal three-dimensional energy-dispersive micro X-ray diffraction experiments[J]. Journal of Applied Crystallography, 40, 1169-1173(2007).
[166] Eba H, Kitakubo Y, Awaji S et al. Observation of crystalline phase distribution with confocal angle-dispersive X-ray diffractometer[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 456, 42-48(2019).
[167] Zhu J, Zhang J, Chen G et al. The application of confocal depth-resolved micro-X-ray absorption spectroscopy to study colorant copper in ancient lead-silica glassy system at the Beijing Synchrotron Radiation Facility[J]. Optik, 218, 165239(2020).
[168] Chen G, Du Y H, An P F et al. In situ depth-resolved synchrotron radiation X-ray spectroscopy study of radiation-induced Au deposition[J]. Journal of Synchrotron Radiation, 26, 1940-1944(2019).
[169] Sun T X. MacDonald C A. Full-field transmission X-ray imaging with confocal polycapillary X-ray optics[J]. Journal of Applied Physics, 113, 053104(2013).
Get Citation
Copy Citation Text
Tianxi Sun. Capillary X-Ray Lens Technology and Its Applications[J]. Acta Optica Sinica, 2022, 42(11): 1134002
Category: X-Ray Optics
Received: Feb. 9, 2022
Accepted: Mar. 22, 2022
Published Online: Jun. 3, 2022
The Author Email: Sun Tianxi (stx@bnu.edu.cn)