Infrared and Laser Engineering, Volume. 50, Issue 11, 20210155(2021)
Structure of Fabry-Perot cavity type weak magnetic sensitivity enhancement vapor cell
[1] Chai G, Huang L, Qiao L, et al. Effect of the on-board residual magnetism on internal sensors[J]. Chinese Optics, 12, 515-525(2019).
[2] Kominis I, Kornack T, Romalis M, et al. A subfemotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).
[3] Wang F, Niu S, Yue C. et al. Design of attitude control system for ASTRU microsatellite[J]. Optics and Precision Engineering, 28, 2192-2202(2020).
[4] [4] Seltzer S. Developments in alkalimetal atomic magometry[D]. Princeton: Princeton University, 2008.
[5] Romalis M, Dang H, Mallof A. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letter, 97, 151110(2010).
[6] Wei K, Zhao T, Fang X J, et al. In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts[J]. Optics Express, 27, 16169-16183(2019).
[7] Knappe S, Schwindt P, Gerginov V, et al. Microfabricated atomic clocks and magnetometers[J]. Journal of Optics A: Pure and Applied Optics, 8, 318-322(2007).
[8] Kornack T, Smullin S, Romalis M, et al. A low-noise ferrite magnetic shield[J]. Applied Physics Letters, 90, 223501(2007).
[9] Fan W, Quan W, Zhang W, et al. Analysis on the magnetic field response for nuclear spin co-magnetometer operated in spin-exchange relaxation-free regime[J]. IEEE Access, 7, 28674-28580(2019).
[10] Wang Y, Liang M. Research on the spin-exchange-relaxation-free atomic magnetometer based on Herriott multipass cell[J]. Chinese Journal of Scientific Instrument, 41, 43-49(2020).
[11] Sheng D, Li S, Dural N, et al. Sub-femtotesla scalar atomic magnetometer using multipass cell[J]. Physical Review Letters, 110, 160802(2013).
[12] [12] Knack T. A test of CPT Lentz symmetry using a K3He comagometer[D]. Princeton: Princeton University, 2005.
[13] Xu G, Zhang Y, Jiang Q, et al. Temperature control of vapor cell based on the light absorption of nuclear magnetic resonance gyroscope[J]. Infrared and Laser Engineering, 48, S106003(2019).
[14] Ma G, Zhang J, Zhang H, et al. Resonant mode of Fabry-Perot microcavity regulated by metal surface platforms[J]. Chinese Optics, 12, 651-664(2019).
[15] Huang Y, Ma C, Hao Y, et al. Study on the lasing and thermal characteristic of square-FP coupled cavity semiconductor laser[J]. Chinese Journal of Lasers, 47, 0701017(2020).
[16] Chen Q, Zhao H, Zhang W. External oil cavity coupled with EFPI partial discharge ultrasonic detection sensor[J]. Optics and Precision Engineering, 28, 1471-1479(2020).
[17] Ning F, Tan R, Wang Y, et al. Investigation on threshold characteristic of laser-diode and end-pumped potassium vapor laser[J]. Infrared and Laser Engineering, 48, S105002(2019).
[18] [18] Lv B. Laser Optics: Laser Beam Propagation Beam Quality Control[M]. Chengdu: Sichuan University Press, 1992: 613. (in Chinese)
Get Citation
Copy Citation Text
Nuerlan Tuerdahong, Lianqing Zhu, Guangwei Chen, Huiyu Li, Jing Zhu. Structure of Fabry-Perot cavity type weak magnetic sensitivity enhancement vapor cell[J]. Infrared and Laser Engineering, 2021, 50(11): 20210155
Category: Lasers & Laser optics
Received: Mar. 10, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: