Journal of Inorganic Materials, Volume. 39, Issue 5, 477(2024)

Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells

Tian CHEN1, Yuan LUO1, Liu ZHU2,3, Xueyi GUO1, and Ying YANG1、*
Author Affiliations
  • 11. School of Metallurgy and Environment, Central South University, Changsha 410083, China
  • 22. First Rare Materials Co., Ltd., Qingyuan 511500, China
  • 33. Guangdong Provincial Enterprises Key Laboratory of High Performance Thin Film Solar Materials, Qingyuan 511517, China
  • show less
    References(31)

    [2] FANG W, SHEN L, LI H et al. Effect of film formation processes of NiOx mesoporous layer on performance of perovskite solar cells with carbon electrodes[J]. J. Inorg. Mater., 1103(2023).

    [3] LUO Q, MA H, HOU Q et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Adv. Funct. Mater., 1706777(2018).

    [4] WEI J, GUO F, WANG X et al. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability[J]. Adv. Mater., 1805153(2018).

    [5] LI M, ZHOU J, TAN L et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power- conversion efficiency[J]. The Innovation, 100310(2022).

    [6] ZHU C T, YANG Y, LIN F Y et al. Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances[J]. Rare Metals, 2402(2021).

    [7] YANG Y, CHEN T, PAN D et al. MAPbI3/agarose photoactive composite for highly stable unencapsulated perovskite solar cells in humid environment[J]. Nano Energy, 104246(2020).

    [8] BI D, YI C, LUO J et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nat. Energy, 16142(2016).

    [9] YAO Z, QU D, GUO Y et al. Grain boundary regulation of flexible perovskite solar cells via a polymer alloy additive[J]. Org. Electron., 205(2019).

    [10] LIU C, SUN J, JIANG X F et al. A universal tactic of using Lewis-base polymer-CNTs composites as additives for high performance cm2-sized and flexible perovskite solar cells[J]. Science China Chemistry, 281(2021).

    [11] WANG P C, GOVINDAN V, CHIANG C H et al. Room- temperature-processed fullerene/TiO2 nanocomposite electron transporting layer for high-efficiency rigid and flexible planar perovskite solar cells[J]. Solar RRL, 2000247(2020).

    [12] CHANG C Y, CHU C Y, HUANG Y C et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell[J]. ACS Appl. Mater. Interfaces, 4955(2015).

    [13] GAO L L, LIANG L S, SONG X X et al. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate[J]. J. Mater. Chem. A, 3704(2016).

    [14] ZHOU X, ZHANG Y, KONG W et al. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating[J]. J. Mater. Chem. A, 3012(2018).

    [15] ZONG Y, ZHOU Y, ZHANG Y et al. Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability[J]. Chem, 1404(2018).

    [16] ZHAO Z, XU W, PAN G et al. Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ions[J]. Mater. Res. Bull, 142(2019).

    [17] MEI H, WU Y, WANG C et al. Synergistic engineering of bromine and cetyltrimethylammonium chloride molecules enabling efficient and stable flexible perovskite solar cells[J]. J. Mater. Chem. A, 19425(2020).

    [18] SUN Q, FASSL P, BECKER‐KOCH D et al. Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films[J]. Adv. Energy. Mater, 1700977(2017).

    [19] LI Y, LU K, LING X et al. High performance planar-heterojunction perovskite solar cells using amino-based fulleropyrrolidine as the electron transporting material[J]. J. Mater. Chem. A, 10130(2016).

    [20] YANG J, HONG Q, YUAN Z et al. Unraveling photostability of mixed cation perovskite films in extreme environment[J]. Adv. Opt. Mater., 1800262(2018).

    [21] LI M, YANG Y G, WANG Z K et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability[J]. Adv. Mater., 1901519(2019).

    [23] THIESBRUMMEL J, PEÑA-CAMARGO F, BRINKMANN K O et al. Understanding and minimizing VOC losses in all-perovskite tandem photovoltaics[J]. Adv. Energy Mater, 2202674(2023).

    [24] WANG C, SONG Z, ZHAO D et al. Improving performance and stability of planar perovskite solar cells through grain boundary passivation with block copolymers[J]. Solar RRL, 1900078(2019).

    [25] NGUYEN B P, KIM G Y, JO W et al. Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1-xBrx)3 perovskite solar cells[J]. Nanotechnology, 315402(2017).

    [26] WALI Q, IQBAL Y, PAL B et al. Tin oxide as an emerging electron transport medium in perovskite solar cells[J]. Sol. Energy Mater. Sol. Cells, 102(2018).

    [27] LEIJTENS T, EPERON G E, BARKER A J et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells[J]. Energy Environ. Sci., 3472(2016).

    [28] HUANG Z, HU X, LIU C et al. Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance[J]. Adv. Funct. Mater., 1703061(2017).

    [29] CAPIGLIA C, MUSTARELLI P, QUARTARONE E et al. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes[J]. Solid State Ionics, 73(1999).

    [30] SCROSATI B, CROCE F, PERSI L. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes[J]. J. Electrochem. Soc., 1718(2000).

    [31] HAN H, LIU W, ZHANG J et al. A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid‐state redox electrolyte for dye-sensitized nanocrystalline solar cells[J]. Adv. Funct. Mater., 1940(2005).

    Tools

    Get Citation

    Copy Citation Text

    Tian CHEN, Yuan LUO, Liu ZHU, Xueyi GUO, Ying YANG. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(5): 477

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 16, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: Ying YANG (muyicaoyang@csu.edu.cn)

    DOI:10.15541/jim20230532

    Topics