Journal of Semiconductors, Volume. 42, Issue 4, 041302(2021)

Photonic radio frequency channelizers based on Kerr optical micro-combs

Mengxi Tan1, Xingyuan Xu2, Jiayang Wu1, Thach G. Nguyen3, Sai T. Chu4, Brent E. Little5, Roberto Morandotti6,7, Arnan Mitchell3, and David J. Moss1
Author Affiliations
  • 1Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • 2Electro-Photonics Laboratory, Department of Electrical and Computer Systems Engineering, Monash University, VIC3800, Australia
  • 3School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
  • 4Department of Physics, City University of Hong Kong, Hong Kong, China
  • 5State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an 710119, China
  • 6INRS -Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
  • 7Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    References(178)

    [1]

    [2] J Leuthold, C Koos, W Freude. Nonlinear silicon photonics. Nat Photonics, 4, 535(2010).

    [3] L Li, P G Patki, Y B Kwon et al. All-optical regenerator of multi-channel signals. Nat Commun, 8, 884(2017).

    [4] F Li, T D Vo, C Husko et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express, 19, 20364(2011).

    [5] F Li, M Pelusi, B J Eggleton et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt Express, 18, 3905(2010).

    [6] H Ji, M Galili, H Hu et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technol Lett, 22, 1762(2010).

    [7] C Monat, C Grillet, B Corcoran et al. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Opt Express, 18, 6831(2010).

    [8] B Corcoran, C Monat, M Pelusi et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt Express, 18, 7770(2010).

    [9] V G Ta’eed, M Shokooh-Saremi, L B Fu et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Opt Lett, 30, 2900(2005).

    [10] M Rochette, J N Kutz, J L Blows et al. Bit-error-ratio improvement with 2R optical regenerators. IEEE Photonics Technol Lett, 17, 908(2005).

    [11] M Ferrera, C Reimer, A Pasquazi et al. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt Express, 22, 21488(2014).

    [12] C Monat, C Grillet, M Collins et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat Commun, 5, 3246(2014).

    [13] F Li, M Pelusi, D X Xu et al. All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Opt Express, 19, 22410(2011).

    [14] T D Vo, B Corcoran, J Schroder et al. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. J Lightwave Technol, 29, 1790(2011).

    [15] M Ferrera, Y Park, L Razzari et al. All-optical 1st and 2nd order integration on a chip. Opt Express, 19, 23153(2011).

    [16] B Corcoran, T D Vo, M D Pelusi et al. Silicon nanowire based radio-frequency spectrum analyzer. Opt Express, 18, 20190(2010).

    [17] B Corcoran, C Monat, C Grillet et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics, 3, 206(2009).

    [18] D J Moss, H M van Driel, J E Sipe. Dispersion in the anisotropy of optical third-harmonic generation in silicon. Opt Lett, 14, 57(1989).

    [19] J Sipe, D Moss, H van Driel. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys Rev B, 35, 1129(1987).

    [20] D J Moss, E Ghahramani, J E Sipe et al. Band-structure calculation of dispersion and anisotropy in χ→(3) for third-harmonic generation in Si, Ge, and GaAs. Phys Rev B, 41, 1542(1990).

    [21] D J Moss, H M van Driel, J E Sipe. Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon. Appl Phys Lett, 48, 1150(1986).

    [22] D J Moss, L Fu, I Littler et al. Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides. Electron Lett, 41, 320(2005).

    [23] M R E Lamont, M Rochette, D J Moss et al. Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration. IEEE Photonics Technol Lett, 18, 1185(2006).

    [24] A Tuniz, G Brawley, D J Moss et al. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber. Opt Express, 16, 18524(2008).

    [25] M D Pelusi, F Luan, E Magi et al. High bit rate all-optical signal processing in a fiber photonic wire. Opt Express, 16, 11506(2008).

    [26] M W Lee, C Grillet, C L C Smith et al. Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt Express, 15, 1277(2007).

    [27] S Tomljenovic-Hanic, M J Steel, C Martijn de Sterke et al. High-Q cavities in photosensitive photonic crystals. Opt Lett, 32, 542(2007).

    [28] C Grillet, C Monat, C L Smith et al. Nanowire coupling to photonic crystal nanocavities for single photon sources. Opt Express, 15, 1267(2007).

    [29] V Ta'Eed, N J Baker, L B Fu et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express, 15, 9205(2007).

    [30] D Freeman, C Grillet, M W Lee et al. Chalcogenide glass photonic crystals. Photonics and Nanostructures-Fundamentals and Applications, 6, 3(2008).

    [31] C Grillet, D Freeman, B Luther-Davies et al. Characterization and modeling of Fano resonances in chalcogenide glass photonic crystal membranes. 2006 Conf Lasers Electro-Opt 2006 Quantum Electron Laser Sci Conf, 1(2006).

    [32] V G Ta'Eed, M Shokooh-Saremi, L Fu et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J Sel Top Quantum Electron, 12, 360(2006).

    [33] M Shokooh-Saremi, V G Ta'Eed, N J Baker et al. High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J Opt Soc Am B, 23, 1323(2006).

    [34] M R E Lamont, V G Ta'Eed, M A F Roelens et al. Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide. Electron Lett, 43, 945(2007).

    [35] K Ikeda, R E Saperstein, N Alic et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 16, 12987(2008).

    [36] J S Levy, A Gondarenko, M A Foster et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 4, 37(2010).

    [37] L Razzari, D Duchesne, M Ferrera et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 4, 41(2010).

    [38] D J Moss, R Morandotti, A L Gaeta et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 7, 597(2013).

    [39] M Ferrera, L Razzari, D Duchesne et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2, 737(2008).

    [40] A Pasquazi, M Peccianti, Y Park et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 5, 618(2011).

    [41] D Duchesne, M Peccianti, M R E Lamont et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt Express, 18, 923(2010).

    [42] M Ferrera, Y Park, L Razzari et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 1, 29(2010).

    [43] A Pasquazi, R Ahmad, M Rochette et al. All-optical wavelength conversion in an integrated ring resonator. Opt Express, 18, 3858(2010).

    [44] A Pasquazi, Y Park, J Azaña et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt Express, 18, 7634(2010).

    [45] M Peccianti, M Ferrera, L Razzari et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express, 18, 7625(2010).

    [46] D Duchesne, M Ferrera, L Razzari et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express, 17, 1865(2009).

    [47] A Pasquazi, M Peccianti, L Razzari et al. Micro-combs: A novel generation of optical sources. Phys Rep, 729, 1(2018).

    [48] P Del’Haye, A Schliesser, O Arcizet et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214(2007).

    [49] M Peccianti, A Pasquazi, Y Park et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat Commun, 3, 765(2012).

    [50] M Kues, C Reimer, B Wetzel et al. Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics, 11, 159(2017).

    [51] A Pasquazi, L Caspani, M Peccianti et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip. Opt Express, 21, 13333(2013).

    [52] A Pasquazi, M Peccianti, B E Little et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express, 20, 27355(2012).

    [53] C Reimer, L Caspani, M Clerici et al. Integrated frequency comb source of heralded single photons. Opt Express, 22, 6535(2014).

    [54] C Reimer, M Kues, L Caspani et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun, 6, 8236(2015).

    [55] L Caspani, C Reimer, M Kues et al. Multifrequency sources of quantum correlated photon pairs on-chip: A path toward integrated Quantum Frequency Combs. Nanophotonics, 5, 351(2016).

    [56] C Reimer, M Kues, P Roztocki et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176(2016).

    [57] M Kues, C Reimer, P Roztocki et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622(2017).

    [58] P Roztocki, M Kues, C Reimer et al. Practical system for the generation of pulsed quantum frequency combs. Opt Express, 25, 18940(2017).

    [59] Y B Zhang, M Kues, P Roztocki et al. Induced photon correlations through the overlap of two four-wave mixing processes in integrated cavities. Laser Photonics Rev, 14, 2000128(2020).

    [60] M Kues, C Reimer, J M Lukens et al. Quantum optical microcombs. Nature Photon, 13, 170(2019).

    [61] C Reimer, S Sciara, P Roztocki et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 15, 148(2019).

    [62] P Marin-Palomo, J N Kemal, M Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

    [63] J Pfeifle, V Brasch, M Lauermann et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photonics, 8, 375(2014).

    [64] B Corcoran, M X Tan, X Y Xu et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 11, 1(2020).

    [65] X Y Xu, M X Tan, B Corcoran et al. Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev, 14, 2000070(2020).

    [66] X Y Xu, M X Tan, B Corcoran et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44(2021).

    [67]

    [68] D T Spencer, T Drake, T C Briles et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).

    [69] T J Kippenberg, A L Gaeta, M Lipson et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [70] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nat Photonics, 13, 158(2019).

    [71] P Del’Haye, T Herr, E Gavartin et al. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett, 107, 063901(2011).

    [72] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).

    [73] T Herr, V Brasch, J D Jost et al. Temporal solitons in optical microresonators. Nat Photonics, 8, 145(2014).

    [74] F Ferdous, H X Miao, D E Leaird et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photonics, 5, 770(2011).

    [75] X X Xue, P H Wang, Y Xuan et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev, 11, 1600276(2017).

    [76] X X Xue, M H Qi, A M Weiner. Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 5, 244(2016).

    [77] C Grillet, L Carletti, C Monat et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt Express, 20, 22609(2012).

    [78] J W Choi, B U Sohn, G F R Chen et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics, 4, 110804(2019).

    [79] J Capmany, D Novak. Microwave photonics combines two worlds. Nat Photonics, 1, 319(2007).

    [80] J P Yao. Microwave photonics. J Lightwave Technol, 27, 314(2009).

    [81] D Marpaung, J P Yao, J Capmany. Integrated microwave photonics. Nat Photonics, 13, 80(2019).

    [82] J Azaña. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics J, 2, 359(2010).

    [83] J Capmany, B Ortega, D Pastor. A tutorial on microwave photonic filters. J Lightwave Technol, 24, 201(2006).

    [84] V R Supradeepa, C M Long, R Wu et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat Photonics, 6, 186(2012).

    [85] J Y Wu, X Y Xu, T G Nguyen et al. RF photonics: An optical microcombs’ perspective. IEEE J Sel Top Quantum Electron, 24, 1(2018).

    [86] V Torres-Company, A M Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 8, 368(2014).

    [87] Z Jiang, C B Huang, D E Leaird et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 1, 463(2007).

    [88] Y Liu, J Hotten, A Choudhary et al. All-optimized integrated RF photonic notch filter. Opt Lett, 42, 4631(2017).

    [89] Y Liu, D Marpaung, A Choudhary et al. Link performance optimization of chip-based Si3N4 microwave photonic filters. J Lightwave Technol, 36, 4361(2018).

    [90] Y Liu, Y Yu, S X Yuan et al. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt Lett, 41, 5078(2016).

    [91] D Marpaung, B Morrison, M Pagani et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2, 76(2015).

    [92] A Choudhary, B Morrison, I Aryanfar et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J Lightwave Technol, 35, 846(2017).

    [93] D Marpaung, B Morrison, R Pant et al. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt Lett, 38, 4300(2013).

    [94] X Q Zhu, F Y Chen, H F Peng et al. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase. Opt Express, 25, 9232(2017).

    [95] F Jiang, Y Yu, H T Tang et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity. Opt Express, 24, 18655(2016).

    [96] Z J Zhu, H Chi, T Jin et al. All-positive-coefficient microwave photonic filter with rectangular response. Opt Lett, 42, 3012(2017).

    [97] G Yu, W Zhang, J A R Williams. High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photonics Technol Lett, 12, 1183(2000).

    [98] J S Leng, W Zhang, J A R Williams. Optimization of superstructured fiber Bragg gratings for microwave photonic filters response. IEEE Photonics Technol Lett, 16, 1736(2004).

    [99] D B Hunter, R A Minasian, P A Krug. Tunable optical transversal filter based on chirped gratings. Electron Lett, 31, 2205(1995).

    [100] E Hamidi, D E Leaird, A M Weiner. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech, 58, 3269(2010).

    [101] R Wu, V R Supradeepa, C M Long et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 35, 3234(2010).

    [102] S Mansoori, A Mitchell. RF transversal filter using an AOTF. IEEE Photonics Technol Lett, 16, 879(2004).

    [103] M Delgado-Pinar, J Mora, A Díez et al. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator. Opt Lett, 30, 8(2005).

    [104] W Li, J Yao. Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer. Opt Express, 17, 23712(2009).

    [105] C H Chen, C He, D Zhu et al. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator. Opt Lett, 38, 3137(2013).

    [106] T Saitoh, M Kourogi, M Ohtsu. An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-μm wavelength. IEEE Photonics Technol Lett, 8, 1543(1996).

    [107] T G Nguyen, M Shoeiby, S T Chu et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express, 23, 22087(2015).

    [108] X X Xue, Y Xuan, H J Kim et al. Programmable single-bandpass photonic RF filter based on kerr comb from a microring. J Lightwave Technol, 32, 3557(2014).

    [109] X Y Xu, J Y Wu, M Shoeiby et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).

    [110] X Y Xu, M X Tan, J Y Wu et al. Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett, 31, 1854(2019).

    [111] X Y Xu, J Y Wu, T G Nguyen et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 26, 2569(2018).

    [112] X X Xue, Y Xuan, C Y Bao et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J Lightwave Technol, 36, 2312(2018).

    [113] X Y Xu, J Y Wu, T G Nguyen et al. Broadband RF channelizer based on an integrated optical frequency kerr comb source. J Lightwave Technol, 36, 4519(2018).

    [114] X Y Xu, J Y Wu, L N Jia et al. Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. J Opt, 20, 115701(2018).

    [115] X Y Xu, J Y Wu, M X Tan et al. Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator. J Lightwave Technol, 36, 4808(2018).

    [116] X Y Xu, J Y Wu, T G Nguyen et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source. Photon Res, 6, B30(2018).

    [117] X Y Xu, M X Tan, J Y Wu et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J Lightwave Technol, 37, 1288(2019).

    [118] W Liang, D Eliyahu, V S Ilchenko et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 6, 7957(2015).

    [119] J Q Liu, E Lucas, A S Raja et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photonics, 14, 486(2020).

    [120] X Y Xu, J Y Wu, M X Tan et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J Lightwave Technol, 38, 332(2020).

    [121] M X Tan, X Y Xu, J Y Wu et al. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Opt Commun, 465, 125563(2020).

    [122] X Y Xu, M X Tan, J Y Wu et al. Broadband photonic RF channelizer with 92 channels based on a soliton crystal microcomb. J Lightwave Technol, 38, 5116(2020).

    [123] X Xu, M Tan, J Wu et al. Photonic RF and microwave integrator based on a transversal filter with soliton crystal microcombs. IEEE Trans Circuits ad Syst II, 67, 3582(2020).

    [124] X Y Xu, M X Tan, J Wu et al. Photonic RF phase-encoded signal generation with a microcomb source. J Lightwave Technol, 38, 1722(2020).

    [125] X Y Xu, M X Tan, J Y Wu et al. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics, 4, 026102(2019).

    [126] M X Tan, X Y Xu, B Corcoran et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Lightwave Technol, 37, 6097(2019).

    [127] M X Tan, X Y Xu, B Corcoran et al. RF and microwave fractional differentiator based on photonics. IEEE Trans Circuits Syst II, 67, 2767(2020).

    [128] M X Tan, X Y Xu, A Boes et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J Lightwave Technol, 38, 6221(2020).

    [129] M X Tan, X Y Xu, J Y Wu et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv Phys X, 6, 1838946(2021).

    [130] D C Cole, E S Lamb, P Del’Haye et al. Soliton crystals in Kerr resonators. Nat Photonics, 11, 671(2017).

    [131] W Q Wang, Z Z Lu, W F Zhang et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett, 43, 2002(2018).

    [132] B Stern, X Ji, Y Okawachi et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).

    [133] X X Xue, Y Xuan, Y Liu et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics, 9, 594(2015).

    [134] H L Bao, A Cooper, M Rowley et al. Laser cavity-soliton microcombs. Nat Photonics, 13, 384(2019).

    [135] X X Xue, X P Zheng, B K Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat Photonics, 13, 616(2019).

    [136] H Zhou, Y Geng, W W Cui et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl, 8, 1(2019).

    [137] H L Bao, L Olivieri, M Rowley et al. Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Phys Rev Res, 2, 023395(2020).

    [138] L di Lauro, J Li, D J Moss et al. Parametric control of thermal self-pulsation in micro-cavities. Opt Lett, 42, 3407(2017).

    [139] H L Bao, A Cooper, S T Chu et al. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photon Res, 6, B67(2018).

    [140] B Q Shen, L Chang, J Q Liu et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).

    [141] S L Pan, J P Yao. Photonics-based broadband microwave measurement. J Lightwave Technol, 35, 3498(2017).

    [142] J Azana, C Madsen, K Takiguchi et al. Guest editorial optical signal processing. J Lightwave Technol, 24, 2484(2006).

    [143] D Marpaung, M Pagani, B Morrison et al. Nonlinear integrated microwave photonics. J Lightwave Technol, 32, 3421(2014).

    [144] R A Minasian. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J Quantum Electron, 52, 1(2016).

    [145] X H Zou, B Lu, W Pan et al. Photonics for microwave measurements. Laser Photonics Rev, 10, 711(2016).

    [146] K Xu, R X Wang, Y T Dai et al. Microwave photonics: Radio-over-fiber links, systems, and applications. Photon Res, 2, B54(2014).

    [147] S L Pan, D Zhu, S F Liu et al. Satellite payloads pay off. IEEE Microwave, 16, 61(2015).

    [148] H W Chen, R Y Li, C Lei et al. Photonics-assisted serial channelized radio-frequency measurement system with nyquist-bandwidth detection. IEEE Photonics J, 6, 1(2014).

    [149] X J Xie, Y T Dai, Y Ji et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb. IEEE Photonics Technol Lett, 24, 661(2012).

    [150] W S Wang, R L Davis, T J Jung et al. Characterization of a coherent optical RF channelizer based on a diffraction grating. IEEE Trans Microw Theory Tech, 49, 1996(2001).

    [151] W T Rhodes. Acousto-optic signal processing: Convolution and correlation. Proc IEEE, 69, 65(1981).

    [152] D B Hunter, L G Edvell, M A Englund. Wideband microwave photonic channelised receiver. 2005 International Topical Meeting on Microwave Photonics, 249(2005).

    [153] S T Winnall, A C Lindsay, M W Austin et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system. IEEE Trans Microw Theory Tech, 54, 868(2006).

    [154] W Y Xu, D Zhu, S L Pan. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering. Opt Eng, 55, 046106(2016).

    [155] X H Zou, W Z Li, W Pan et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering. IEEE Trans Microw Theory Tech, 61, 3470(2013).

    [156] C S Bres, S Zlatanovic, A O J Wiberg et al. Parametric photonic channelized RF receiver. IEEE Photon Technol Lett, 23, 344(2011).

    [157] A O J Wiberg, D J Esman, L Liu et al. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers. J Lightwave Technol, 32, 3609(2014).

    [158] X H Zou, W Pan, B Luo et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source. Opt Lett, 35, 438(2010).

    [159]

    [160] X J Xie, Y T Dai, K Xu et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators. IEEE Photonics J, 4, 1196(2012).

    [161] Z Li, X M Zhang, H Chi et al. A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb. Opt Commun, 285, 2311(2012).

    [162] R Y Li, H W Chen, Y Yu et al. Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning. Opt Lett, 38, 4781(2013).

    [163] W H Hao, Y T Dai, F F Yin et al. Chirped-pulse-based broadband RF channelization implemented by a mode-locked laser and dispersion. Opt Lett, 42, 5234(2017).

    [164] T Herr, K Hartinger, J Riemensberger et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photonics, 6, 480(2012).

    [165] L Caspani, C Xiong, B Eggleton et al. On-chip sources of quantum correlated and entangled photons. Light Sci Appl, 6, e17100(2017).

    [166] F da Ros, E Porto da Silva, D Zibar et al. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide. APL Photonics, 2, 046105(2017).

    [167] X X Xue, A M Weiner. Microwave photonics connected with microresonator frequency combs. Front Optoelectron, 9, 238(2016).

    [168] S Coen, H G Randle, T Sylvestre et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt Lett, 38, 37(2012).

    [169] Y K Chembo, C R Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A, 87, 053852(2013).

    [170] H Guo, M Karpov, E Lucas et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys, 13, 94(2017).

    [171] X X Xue, Y Xuan, C Wang et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express, 24, 687(2016).

    [172] B Bernhardt, A Ozawa, P Jacquet et al. Cavity-enhanced dual-comb spectroscopy. Nat Photonics, 4, 55(2010).

    [173] T Ideguchi, A Poisson, G Guelachvili et al. Adaptive real-time dual-comb spectroscopy. Nat Commun, 5, 3375(2014).

    [174] G Millot, S Pitois, M Yan et al. Frequency-agile dual-comb spectroscopy. Nat Photonics, 10, 27(2016).

    [175] M G Suh, Q F Yang, K Y Yang et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

    [176] N G Pavlov, G Lihachev, S Koptyaev et al. Soliton dual frequency combs in crystalline microresonators. Opt Lett, 42, 514(2017).

    [177] T C Briles, T E Drake, D T Spencer et al. Optical frequency synthesis using a dual-Kerr-microresonator frequency comb. Conference on Lasers and Electro-Optics, SW4N. 3(2017).

    [178] B E Little, S T Chu, P P Absil et al. Very high-order microring resonator filters for WDM applications. IEEE Photon Technol Lett, 16, 2263(2004).

    Tools

    Get Citation

    Copy Citation Text

    Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss. Photonic radio frequency channelizers based on Kerr optical micro-combs[J]. Journal of Semiconductors, 2021, 42(4): 041302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 8, 2021

    Accepted: --

    Published Online: Jun. 17, 2021

    The Author Email:

    DOI:10.1088/1674-4926/42/4/041302

    Topics