International Journal of Extreme Manufacturing, Volume. 6, Issue 6, 62002(2024)
Aqueous electrolyte additives for zinc-ion batteries
[1] [1] Lin D C, Liu Y Y and Cui Y 2017 Reviving the lithium metal anode for high-energy batteries Nat. Nanotechnol.12 194–206
[2] [2] Liu K, Liu Y Y, Lin D C, Pei A L and Cui Y 2018 Materials for lithium-ion battery safety Sci. Adv.4 eaas9820
[3] [3] Hou Y, Huang Z D, Chen Z, Li X L, Chen A, Li P, Wang Y B and Zhi C Y 2022 Bifunctional separators design for safe lithium-ion batteries: suppressed lithium dendrites and fire retardance Nano Energy97 107204
[4] [4] Xu K 2004 Nonaqueous liquid electrolytes for lithium-based rechargeable batteries Chem. Rev.104 4303–418
[5] [5] Borodin O et al 2017 Liquid structure with Nano-heterogeneity promotes cationic transport in concentrated electrolytes ACS Nano11 10462–71
[6] [6] Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K and Wang C S 2018 Highly reversible zinc metal anode for aqueous batteries Nat. Mater.17 543–9
[7] [7] Li M, Wang C S, Chen Z W, Xu K and Lu J 2020 New concepts in electrolytes Chem. Rev.120 6783–819
[8] [8] Liu C X, Xie X S, Lu B G, Zhou J and Liang S Q 2021 Electrolyte strategies toward better zinc-ion batteries ACS Energy Lett.6 1015–33
[9] [9] Pei Z X 2022 Symmetric is nonidentical: operation history matters for Zn metal anode Nano Res. Energy1 9120023
[10] [10] Li Q, Chen A, Wang D H, Zhao Y W, Wang X Q, Jin X, Xiong B and Zhi C Y 2022 Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries Nat. Commun.13 3699
[11] [11] Song M, Tan H, Chao D L and Fan H J 2018 Recent advances in Zn-Ion batteries Adv. Funct. Mater.28 1802564
[12] [12] Pan H L et al 2016 Reversible aqueous zinc/manganese oxide energy storage from conversion reactions Nat. Energy1 16039
[13] [13] Zheng X H, Ahmad T and Chen W 2021 Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries Energy Storage Mater.39 365–94
[14] [14] Xu Y, Zheng X H, Sun J F, Wang W P, Wang M M, Yuan Y, Chuai M, Chen N, Hu H L and Chen W 2022 Nucleophilic interfacial layer enables stable Zn anodes for aqueous Zn batteries Nano Lett.22 3298–306
[15] [15] Blanc L E, Kundu D and Nazar L F 2020 Scientific challenges for the implementation of Zn-Ion batteries Joule4 771–99
[16] [16] Goodenough J B and Kim Y 2010 Challenges for rechargeable Li batteries Chem. Mater.22 587–603
[17] [17] Kundu D, Hosseini Vajargah S, Wan L W, Adams B, Prendergast D and Nazar L F 2018 Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface Energy Environ. Sci.11 881–92
[18] [18] Goodenough J B and Park K-S 2013 The Li-ion rechargeable battery: a perspective J. Am. Chem. Soc.135 1167–76
[19] [19] Goodenough J B 2014 Electrochemical energy storage in a sustainable modern society Energy Environ. Sci.7 14–18
[20] [20] Zhang R, Wu Z X, Huang Z D, Guo Y, Zhang S C, Zhao Y W and Zhi C Y 2023 Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery Chin. Chem. Lett.34 107600
[21] [21] Zhao Y W et al 2022 Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries Nat. Commun.13 752
[22] [22] Liang G J et al 2023 Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction Nat. Commun.14 1856
[23] [23] Yang S, Guo X, Lv H M, Han C P, Chen A, Tang Z J, Li X L, Zhi C Y and Li H F 2022 Rechargeable iodine batteries: fundamentals, advances, and perspectives ACS Nano16 13554–72
[24] [24] Li Q, Wang D H, Yan B X, Zhao Y W, Fan J and Zhi C Y 2022 Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices Angew. Chem., Int. Ed.61 e202202780
[25] [25] Cui H L et al 2022 High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation Angew. Chem., Int. Ed.61 e202203453
[26] [26] Liang G J, Mo F N, Li H F, Tang Z J, Liu Z X, Wang D H, Yang Q, Ma L T and Zhi C Y 2019 A universal principle to design reversible aqueous batteries based on deposition–dissolution mechanism Adv. Energy Mater.9 1901838
[27] [27] Jiang L W, Dong D J and Lu Y-C 2022 Design strategies for low temperature aqueous electrolytes Nano Res. Energy1 9120003
[28] [28] Xie F X, Li H, Wang X S, Zhi X, Chao D L, Davey K and Qiao S-Z 2021 Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries Adv. Energy Mater.11 2003419
[29] [29] Wu K, Huang J H, Yi J, Liu X Y, Liu Y Y, Wang Y G, Zhang J J and Xia Y Y 2020 Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives Adv. Energy Mater.10 1903977
[30] [30] Bayaguud A, Fu Y P and Zhu C B 2022 Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies J. Energy Chem.64 246–62
[31] [31] Xie J, Liang Z J and Lu Y-C 2020 Molecular crowding electrolytes for high-voltage aqueous batteries Nat. Mater.19 1006–11
[32] [32] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S and Xu K 2015 “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries Science350 938–43
[33] [33] Chen L et al 2020 A 63 m superconcentrated aqueous electrolyte for high-energy Li-Ion batteries ACS Energy Lett.5 968–74
[34] [34] Liang G, Mo F, Ji X and Zhi C 2021 Non-metallic charge carriers for aqueous batteries Nat. Rev. Mater.6 109–23
[35] [35] Sun P, Ma L, Zhou W H, Qiu M J, Wang Z L, Chao D L and Mai W 2021 Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn Ion batteries achieved by a low-cost glucose additive Angew. Chem., Int. Ed.60 18247–55
[36] [36] Wang D H, Li Q, Zhao Y W, Hong H, Li H F, Huang Z D, Liang G J, Yang Q and Zhi C Y 2022 Insight on organic molecules in aqueous Zn-Ion batteries with an emphasis on the Zn anode regulation Adv. Energy Mater.12 2102707
[37] [37] Sui Y and Ji X L 2021 Anticatalytic strategies to suppress water electrolysis in aqueous batteries Chem. Rev.121 6654–95
[38] [38] Yang Q, Li Q, Liu Z X, Wang D H, Guo Y, Li X L, Tang Y C, Li H F, Dong B B and Zhi C Y 2020 Dendrites in Zn-based batteries Adv. Mater.32 2001854
[39] [39] Tian Y D, Chen S, He Y L, Chen Q W, Zhang L L and Zhang J T 2022 A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries Nano Res. Energy1 9120025
[40] [40] Kundu D, Adams B D, Duffort V, Vajargah S H and Nazar L F 2016 A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode Nat. Energy1 16119
[41] [41] Yi Z H, Chen G Y, Hou F, Wang L Q and Liang J 2021 Strategies for the stabilization of Zn metal anodes for Zn-Ion batteries Adv. Energy Mater.11 2003065
[42] [42] Zhang W D, Zhuang H L, Fan L, Gao L N and Lu Y Y 2018 A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries Sci. Adv.4 eaar4410
[43] [43] Li Q, Wang Y B, Mo F N, Wang D H, Liang G J, Zhao Y W, Yang Q, Huang Z D and Zhi C Y 2021 Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure Adv. Energy Mater.11 2003931
[44] [44] Wang S-B, Ran Q, Yao R-Q, Shi H, Wen Z, Zhao M, Lang X-Y and Jiang Q 2020 Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries Nat. Commun.11 1634
[45] [45] Yang Q, Liang G J, Guo Y, Liu Z X, Yan B X, Wang D H, Huang Z D, Li X L, Fan J and Zhi C Y 2019 Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries Adv. Mater.31 1903778
[46] [46] Ma L, Schroeder M A, Borodin O, Pollard T P, Ding M S, Wang C S and Xu K 2020 Realizing high zinc reversibility in rechargeable batteries Nat. Energy5 743–9
[47] [47] Huang Z D et al 2022 Small-dipole-molecule-containing electrolytes for high-voltage aqueous rechargeable batteries Adv. Mater.34 2106180
[48] [48] Lv Y Q, Xiao Y, Ma L T, Zhi C Y and Chen S M 2022 Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries Adv. Mater.34 2106409
[49] [49] Yuan L B, Hao J N, Kao C-C, Wu C, Liu H-K, Dou S-X and Qiao S-Z 2021 Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries Energy Environ. Sci.14 5669–89
[50] [50] Schmeisser M, Illner P, Puchta R, Zahl A and Van Eldik R 2012 Gutmann donor and acceptor numbers for ionic liquids Chem. Eur. J.18 10969–82
[51] [51] Miranda-Quintana R A and Smiatek J 2021 Calculation of donor numbers: computational estimates for the Lewis basicity of solvents J. Mol. Liq.322 114506
[52] [52] Fawcett W R 1993 Acidity and basicity scales for polar solvents J. Phys. Chem.97 9540–6
[53] [53] Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D and Zhi C Y 2020 Voltage issue of aqueous rechargeable metal-ion batteries Chem. Soc. Rev.49 180–232
[54] [54] Nam K W, Kim H, Choi J H and Choi J W 2019 Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries Energy Environ. Sci.12 1999–2009
[55] [55] Cui J, Liu X Y, Xie Y H, Wu K, Wang Y Q, Liu Y Y, Zhang J J, Yi J and Xia Y Y 2020 Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding Mater. Today Energy18 100563
[56] [56] Zhang Q, Xia K X, Ma Y L, Lu Y, Li L, Liang J, Chou S L and Chen J 2021 Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries ACS Energy Lett.6 2704–12
[57] [57] Sun K E K, Hoang T K A, Doan T N L, Yu Y and Chen P 2018 Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery Chem. Eur. J.24 1667–73
[58] [58] Cao J, Zhang D D, Zhang X Y, Zeng Z Y, Qin J Q and Huang Y H 2022 Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries Energy Environ. Sci.15 499–528
[59] [59] Cao L S, Li D, Hu E Y, Xu J J, Deng T, Ma L, Wang Y, Yang X-Q and Wang C S 2020 Solvation structure design for aqueous Zn metal batteries J. Am. Chem. Soc.142 21404–9
[60] [60] Hou Z, Tan H, Gao Y, Li M H, Lu Z H and Zhang B 2020 Tailoring desolvation kinetics enables stable zinc metal anodes J. Mater. Chem. A 8 19367–74
[61] [61] Wang N, Yang Y, Qiu X, Dong X L, Wang Y G and Xia Y Y 2020 Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker ChemSusChem13 5556–64
[62] [62] Du H H, Wang K, Sun T J, Shi J Q, Zhou X Z, Cai W S and Tao Z L 2022 Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte Chem. Eng. J.427 131705
[63] [63] Zhang Q, Ma Y L, Lu Y, Zhou X Z, Lin L, Li L, Yan Z H, Zhao Q, Zhang K and Chen J 2021 Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode Angew. Chem., Int. Ed.60 23357–64
[64] [64] Wang P J, Xie X S, Xing Z Y, Chen X H, Fang G Z, Lu B G, Zhou J, Liang S Q and Fan H J 2021 Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors Adv. Energy Mater.11 2101158
[65] [65] Jin Y, Han K S, Shao Y Y, Sushko M L, Xiao J, Pan H L and Liu J 2020 Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes Adv. Funct. Mater.30 2003932
[66] [66] Feng D D, Cao F Q, Hou L, Li T Y, Jiao Y C and Wu P Y 2021 Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives Small17 2103195
[67] [67] Shi J Q, Xia K X, Liu L J, Liu C, Zhang Q, Li L, Zhou X Z, Liang J and Tao Z L 2020 Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile Electrochim. Acta358 136937
[68] [68] Song X Y, He H B, Aboonasr Shiraz M H, Zhu H Z, Khosrozadeh A and Liu J 2021 Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte Chem. Commun.57 1246–9
[69] [69] Etman A S, Carboni M, Sun J L and Younesi R 2020 Acetonitrile-based electrolytes for rechargeable zinc batteries Energy Technol.8 2000358
[70] [70] Hao J N, Yuan L B, Ye C, Chao D L, Davey K, Guo Z P and Qiao S-Z 2021 Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents Angew. Chem., Int. Ed.60 7366–75
[71] [71] Qin R Z et al 2021 Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries Nano Energy80 105478
[72] [72] Feng R F, Chi X W, Qiu Q L, Wu J, Huang J Q, Liu J J and Liu Y 2021 Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries ACS Appl. Mater. Interfaces13 40638–47
[73] [73] Nigatu T A, Bezabh H K, Taklu B W, Olbasa B W, Weng Y-T, Wu S-H, Su W-N, Yang C-C and Hwang B J 2021 Synergetic effect of water-in-bisalt electrolyte and hydrogen-bond rich additive improving the performance of aqueous batteries J. Power Sources511 230413
[74] [74] Dong Y, Miao L C, Ma G Q, Di S L, Wang Y Y, Wang L B, Xu J Z and Zhang N 2021 Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries Chem. Sci.12 5843–52
[75] [75] Luo M H, Wang C Y, Lu H T, Lu Y H, Xu B B, Sun W P, Pan H G, Yan M and Jiang Y Z 2021 Dendrite-free zinc anode enabled by zinc-chelating chemistry Energy Storage Mater.41 515–21
[76] [76] Wang N et al 2021 Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism Energy Storage Mater.43 585–94
[77] [77] Hou Z G, Dong M F, Xiong Y L, Zhang X Q, Ao H S, Liu M K, Zhu Y C and Qian Y T 2020 A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion Small16 2001228
[78] [78] Wang S N, Li T Y, Yin Y B, Chang N N, Zhang H M and Li X F 2022 High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive Nano Energy96 107120
[79] [79] Chen J Z, Zhou W J, Quan Y H, Liu B, Yang M, Chen M F, Han X, Xu X W, Zhang P X and Shi S Q 2022 Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer Energy Storage Mater.53 629–37
[80] [80] Zhang H W, Zhong Y, Li J B, Liao Y Q, Zeng J L, Shen Y, Yuan L X, Li Z and Huang Y H 2023 Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-Ion batteries Adv. Energy Mater.13 2203254
[81] [81] Huang C, Zhao X, Liu S, Hao Y S, Tang Q L, Hu A P, Liu Z X and Chen X H 2021 Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions Adv. Mater.33 2100445
[82] [82] Xi M R, Liu Z J, Ding J, Cheng W H, Jia D Z and Lin H 2021 Saccharin anion acts as a “traffic Assistant” of Zn2+ to achieve a long-life and dendritic-free zinc plate anode ACS Appl. Mater. Interfaces13 29631–40
[83] [83] Zeng X et al 2021 Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2Energy Environ. Sci.14 5947–57
[84] [84] Ding F et al 2013 Dendrite-free lithium deposition via self-healing electrostatic shield mechanism J. Am. Chem. Soc.135 4450–6
[85] [85] Wan F, Zhang L L, Dai X, Wang X Y, Niu Z Q and Chen J 2018 Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers Nat. Commun.9 1656
[86] [86] Hoang T K A, Acton M, Chen H T H, Huang Y, Doan T N L and Chen P 2017 Sustainable gel electrolyte containing Pb2+ as corrosion inhibitor and dendrite suppressor for the zinc anode in the rechargeable hybrid aqueous battery Mater. Today Energy4 34–40
[87] [87] Li Y, Wu P, Zhong W, Xie C, Xie Y, Zhang Q, Sun D, Tang Y and Wang H 2021 A progressive nucleation mechanism enables stable zinc stripping-plating behavior Energy Environ. Sci.14 5563–71
[88] [88] Yan M D, Xu C L, Sun Y, Pan H L and Li H 2021 Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive Nano Energy82 105739
[89] [89] Zhou T Y et al 2022 Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive Energy Storage Mater.45 777–85
[90] [90] Wu Y et al 2023 Polymer chain-guided Ion transport in aqueous electrolytes of Zn-Ion batteries Adv. Energy Mater.13 2300719
[91] [91] Zhang Q, Luan J Y, Fu L, Wu S G, Tang Y G, Ji X B and Wang H Y 2019 The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive Angew. Chem.131 15988–94
[92] [92] Peng M K, Tang X N, Xiao K, Hu T, Yuan K and Chen Y W 2023 Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries Angew. Chem., Int. Ed.62 e202302701
[93] [93] Chen Z H, Chen H Z, Che Y C, Cheng L, Zhang H, Chen J, Xie F Y, Wang N, Jin Y S and Meng H 2021 Arginine cations inhibiting charge accumulation of dendrites and boosting Zn metal reversibility in aqueous rechargeable batteries ACS Sustain. Chem. Eng.9 6855–63
[94] [94] Bayaguud A, Luo X, Fu Y P and Zhu C B 2020 Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries ACS Energy Lett.5 3012–20
[95] [95] Zhang S-J, Hao J N, Luo D, Zhang P-F, Zhang B K, Davey K, Lin Z and Qiao S-Z 2021 Dual-function electrolyte additive for highly reversible Zn anode Adv. Energy Mater.11 2102010
[96] [96] Xu W N, Zhao K N, Huo W C, Wang Y Z, Yao G, Gu X, Cheng H W, Mai L, Hu C G and Wang X D 2019 Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries Nano Energy62 275–81
[97] [97] Wei T T, Ren Y K, Wang Y F, Mo L, Li Z Q, Zhang H, Hu L H and Cao G Z 2023 Addition of Dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in Zinc-Ion batteries ACS Nano17 3765–75
[98] [98] Zhang N, Cheng F Y, Liu J X, Wang L B, Long X H, Liu X S, Li F J and Chen J 2017 Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities Nat. Commun.8 405
[99] [99] Zhu C Y, Fang G Z, Liang S Q, Chen Z X, Wang Z Q, Ma J Y, Wang H, Tang B Y, Zheng X S and Zhou J 2020 Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery Energy Storage Mater.24 394–401
[100] [100] Fang G Z, Zhu C Y, Chen M H, Zhou J, Tang B Y, Cao X X, Zheng X S, Pan A Q and Liang S Q 2019 Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous Zinc-Ion battery Adv. Funct. Mater.29 1808375
[101] [101] Guo S, Liang S Q, Zhang B S, Fang G Z, Ma D and Zhou J 2019 Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery ACS Nano13 13456–64
[102] [102] Liu F, Chen Z X, Fang G Z, Wang Z Q, Cai Y S, Tang B Y, Zhou J and Liang S Q 2019 V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous Zinc-Ion battery cathode Nano-Micro. Lett.11 25
[103] [103] Chuai M Y et al 2022 Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2–Zn batteries Adv. Mater.34 2203249
[104] [104] Guo X, Zhou J, Bai C L, Li X K, Fang G Z and Liang S Q 2020 Zn/MnO2 battery chemistry with dissolution-deposition mechanism Mater. Today Energy16 100396
[105] [105] Soundharrajan V et al 2018 Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode ACS Energy Lett.3 1998–2004
[106] [106] Wang D H, Wang L F, Liang G J, Li H F, Liu Z X, Tang Z J, Liang J B and Zhi C Y 2019 A superior -MnO2 cathode and a self-healing Zn--MnO2 battery ACS Nano13 10643–52
[107] [107] Zheng X H et al 2021 Boosting electrolytic MnO2-Zn batteries by a bromine mediator Nano Lett.21 8863–71
[108] [108] Zhu K Y, Wu T and Huang K 2021 Understanding the dissolution and phase transformation mechanisms in aqueous Zn/-V2O5 batteries Chem. Mater.33 4089–98
[109] [109] Lu Y Y, Zhu T Y, Van Den Bergh W, Stefik M and Huang K 2020 A high performing Zn-Ion battery cathode enabled by in situ transformation of V2O5 atomic layers Angew. Chem., Int. Ed.59 17004–11
[110] [110] Yang G Z, Li Q, Ma K X, Hong C and Wang C X 2020 The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries J. Mater. Chem. A 8 8084–95
[111] [111] Guo N et al 2022 A review on 3D zinc anodes for zinc ion batteries Small Methods6 2200597
[112] [112] Yan H H, Zhang X K, Yang Z W, Xia M T, Xu C W, Liu Y W, Yu H X, Zhang L Y and Shu J 2022 Insight into the electrolyte strategies for aqueous zinc ion batteries Coord. Chem. Rev.452 214297
[113] [113] Roy B, Pal U, Kar M and MacFarlane D R 2022 Recent strategies for improving the performance of ionic liquids as battery electrolytes Curr. Opin. Green Sustain. Chem.37 100676
[114] [114] Zong Y, He H W, Wang Y Z, Wu M H, Ren X C, Bai Z C, Wang N N, Ning X and Dou S X 2023 Functionalized separator strategies toward advanced aqueous zinc-ion batteries Adv. Energy Mater.13 2300403
[115] [115] Li X L, Huang Z D, Shuck C E, Liang G J, Gogotsi Y and Zhi C Y 2022 MXene chemistry, electrochemistry and energy storage applications Nat. Rev. Chem.6 389–404
[116] [116] Li H F, Ma L T, Han C P, Wang Z F, Liu Z X, Tang Z J and Zhi C Y 2019 Advanced rechargeable zinc-based batteries: recent progress and future perspectives Nano Energy62 550–87
[117] [117] Fan X L and Wang C S 2021 High-voltage liquid electrolytes for Li batteries: progress and perspectives Chem. Soc. Rev.50 10486–566
[118] [118] Geng Y F et al 2022 Electrolyte additive engineering for aqueous Zn ion batteries Energy Storage Mater.51 733–55
[119] [119] Zhang T S, Tang Y, Guo S, Cao X X, Pan A Q, Fang G Z, Zhou J and Liang S Q 2020 Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review Energy Environ. Sci.13 4625–65
[120] [120] Cao X et al 2019 Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization Nat. Energy4 796–805
[121] [121] Tang B Y, Shan L T, Liang S Q and Zhou J 2019 Issues and opportunities facing aqueous zinc-ion batteries Energy Environ. Sci.12 3288–304
[122] [122] Ming J, Guo J, Xia C, Wang W X and Alshareef H N 2019 Zinc-ion batteries: materials, mechanisms, and applications Mater. Sci. Eng. R 135 58–84
[123] [123] Li C P, Xie X S, Liang S Q and Zhou J 2020 Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries Energy Environ. Mater.3 146–59
Get Citation
Copy Citation Text
Wu Zhuoxi, Huang Zhaodong, Zhang Rong, Hou Yue, Zhi Chunyi. Aqueous electrolyte additives for zinc-ion batteries[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62002
Category: Topical Review
Received: Oct. 12, 2022
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: