Acta Optica Sinica, Volume. 44, Issue 9, 0924001(2024)

High Absorptivity Solar Absorber Based on MIM Resonant Structure

Gongli Xiao1, Kang Chen1, Hongyan Yang2、*, Jiarong Zhang1, Miao Li1, Xingpeng Liu1, and Zanhui Chen1
Author Affiliations
  • 1Key Laboratory of Microelectronic Devices and Integrated Circuits of Guangxi Colleges, School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • 2School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • show less
    References(65)

    [1] Bube F R[M]. Fundamental of solar cells: photovoltaic solar energy conversion(2012).

    [2] Granqvist C G, Niklasson G A. Solar energy materials for thermal applications: a primer[J]. Solar Energy Materials and Solar Cells, 180, 213-226(2018).

    [3] Wang J J, Shi D L. Spectral selective and photothermal nano structured thin films for energy efficient windows[J]. Applied Energy, 208, 83-96(2017).

    [4] Huen P, Daoud W A. Advances in hybrid solar photovoltaic and thermoelectric generators[J]. Renewable and Sustainable Energy Reviews, 72, 1295-1302(2017).

    [5] Mauser K W, Kim S, Mitrovic S et al. Resonant thermoelectric nanophotonics[J]. Nature Nanotechnology, 12, 770-775(2017).

    [6] Sousa-Castillo A, Ameneiro-Prieto Ó, Comesaña-Hermo M et al. Hybrid plasmonic nanoresonators as efficient solar heat shields[J]. Nano Energy, 37, 118-125(2017).

    [7] Wang X Z, He Y R, Liu X et al. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes[J]. Applied Energy, 195, 414-425(2017).

    [8] Ghasemi H, Ni G, Marconnet A M et al. Solar steam generation by heat localization[J]. Nature Communications, 5, 4449(2014).

    [9] Zhou L, Tan Y L, Ji D X et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2, e1501227(2016).

    [10] Ni G, Li G, Boriskina S et al. Steam generation under one sun enabled by a floating structure with thermalconcentration[J]. Nature Energy, 1, 16126(2016).

    [11] Politano A, Argurio P, di Profio G et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 29, 1603504(2017).

    [12] Duan H L, Xuan Y M. Enhanced optical absorption of the plasmonic nanoshell suspension based on the solar photocatalytic hydrogen production system[J]. Applied Energy, 114, 22-29(2014).

    [13] Jiang D Y, Yang W M, Tang A K. A refractory selective solar absorber for high performance thermochemical steam reforming[J]. Applied Energy, 170, 286-292(2016).

    [14] Mola G T, Mthethwa M C, Hamed M S G et al. Local surface plasmon resonance assisted energy harvesting in thin film organic solar cells[J]. Journal of Alloys and Compounds, 856, 158172(2021).

    [15] Thaver Y, Oseni S O, Kaviyarasu K et al. Metal nano-composite assisted photons harvesting in thin film organic photovoltaic[J]. Physica B: Condensed Matter, 582, 411844(2020).

    [16] Adedeji M A, Hamed M S G, Mola G T. Light trapping using copper decorated nano-composite in the hole transport layer of organic solar cell[J]. Solar Energy, 203, 83-90(2020).

    [17] Akbarzadeh S, Valipour M S. Heat transfer enhancement in parabolic trough collectors: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 92, 198-218(2018).

    [18] El Nady J, Kashyout A B, Ebrahim S et al. Nanoparticles Ni electroplating and black paint for solar collector applications[J]. Alexandria Engineering Journal, 55, 723-729(2016).

    [19] Zhao Y, Alù A. Manipulating light polarization with ultrathin plasmonic metasurfaces[J]. Physical Review B, 84, 205428(2011).

    [20] Luo X Q, Tan Z Y, Wang C et al. A reflecting-type highly efficient terahertz cross-polarization converter based on metamaterials[J]. Chinese Optics Letters, 17, 093101(2019).

    [21] Hadad Y, Sounas D L, Alu A. Space-time gradient metasurfaces[J]. Physical Review B, 92, 100304(2015).

    [22] Zhou J H, Hu Y Z, Jiang T et al. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices[J]. Photonics Research, 7, 994-1002(2019).

    [23] Sherrott M C, Hon P W C, Fountaine K T et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 17, 3027-3034(2017).

    [24] Yu P, Besteiro L V, Huang Y J et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 7, 1800995(2019).

    [25] Fan R H, Xiong B, Peng R W et al. Constructing metastructures with broadband electromagnetic functionality[J]. Advanced Materials, 32, 1904646(2019).

    [26] Feng L, Huo P C, Liang Y Z et al. Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications[J]. Advanced Materials, 32, 1903787(2020).

    [27] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [28] Gong J H, Yang F L, Zhang X P. A novel wideband optical absorber based on all-metal 2D gradient nanostructures[J]. Journal of Physics D: Applied Physics, 50, 455105(2017).

    [29] Aydin K, Ferry V E, Briggs R M et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2, 517(2011).

    [30] Lin K T, Chen H L, Lai Y S et al. Loading effect-induced broadband perfect absorber based on single-layer structured metal film[J]. Nano Energy, 37, 61-73(2017).

    [31] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [32] Bae K, Kang G M, Cho S K et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation[J]. Nature Communications, 6, 10103(2015).

    [33] Wang H F, Shi J X, Qian L Y et al. Large-area broadband optical absorber fabricated by shadowing sphere lithography[J]. Optics Express, 26, 7507-7515(2018).

    [34] Liu Z Q, Liu X S, Huang S et al. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation[J]. ACS Applied Materials & Interfaces, 7, 4962-4968(2015).

    [35] Ghobadi A, Hajian H, Rashed A R et al. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth[J]. Photonics Research, 6, 168-176(2018).

    [36] Li Y Y, Liu Z Q, Pan P P et al. Semiconductor-nanoantenna-assisted solar absorber for ultra-broadband light trapping[J]. Nanoscale Research Letters, 15, 76(2020).

    [37] Li Y Y, Chen Q Q, Wu B et al. Broadband perfect metamaterial absorber based on the gallium arsenide grating complex structure[J]. Results in Physics, 15, 102760(2019).

    [38] Tian X M, Li Z Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 4, 146-152(2016).

    [39] Wu J, Sun Y S, Wu B Y et al. Broadband and wide-angle solar absorber for the visible and near-infrared frequencies[J]. Solar Energy, 238, 78-83(2022).

    [40] Søndergaard T, Bozhevolnyi S. Slow-plasmon resonant nanostructures: scattering and field enhancements[J]. Physical Review B, 75, 073402(2007).

    [41] Søndergaard T, Bozhevolnyi S. Slow-plasmon resonant nanostructures: scattering and field enhancements[J]. Physical Review B, 75, 073402(2007).

    [42] Bozhevolnyi S I, Søndergaard T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators[J]. Optics Express, 15, 10869-10877(2007).

    [43] Søndergaard T, Bozhevolnyi S I. Metal nano-strip optical resonators[J]. Optics Express, 15, 4198-4204(2007).

    [44] Søndergaard T, Bozhevolnyi S I. Strip and gap plasmon polariton optical resonators[J]. Physica Status Solidi (b), 245, 9-19(2008).

    [45] Søndergaard T, Beermann J, Boltasseva A et al. Slow-plasmon resonant-nanostrip antennas: analysis and demonstration[J]. Physical Review B, 77, 115420(2008).

    [46] Jung J, Søndergaard T, Bozhevolnyi S I. Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons[J]. Physical Review B, 79, 035401(2009).

    [47] Jung J, Søndergaard T, Beermann J et al. Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz[J]. Journal of the Optical Society of America B, 26, 121-124(2008).

    [48] Liu S S, Ding F, Wu J et al. A metamaterial absorber with centre-spin design and characteristic modes analysis[J]. Physica Scripta, 97, 045502(2022).

    [49] Smith D R, Vier D C, Koschny T et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 71, 036617(2005).

    [50] Guo L, Shi M F, Liu Y J et al. High efficient ultra-broadband nanoscale solar energy absorber based on stacked bilayer nano-arrays structure[J]. Renewable Energy, 215, 119015(2023).

    [51] Liu G Q, Liu X S, Chen J et al. Near-unity, full-spectrum nanoscale solar absorbers and near-perfect blackbody emitters[J]. Solar Energy Materials and Solar Cells, 190, 20-29(2019).

    [52] Chew L T, Zhou X L, Simpson R et al. Chalcogenide active photonics[J]. Proceedings of SPIE, 10345, 103451B(2017).

    [53] Palik E D[M]. Handbook of optical constants of solids(1985).

    [54] Xiao G L, Lai Z F, Yang H Y et al. Tunable environment-enhanced mid-infrared absorber based on voltage modulation[J]. IEEE Photonics Journal, 15, 4601206(2023).

    [55] Wang Z L, Liu Z, Zhang C et al. Notched nanoring wideband absorber for total solar energy harvesting[J]. Solar Energy, 243, 153-162(2022).

    [56] Qin F, Chen X F, Yi Z et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Solar Energy Materials and Solar Cells, 211, 110535(2020).

    [57] Zheng Y, Wu P H, Yang H et al. High efficiency Titanium oxides and nitrides ultra-broadband solar energy absorber and thermal emitter from 200 nm to 2600 nm[J]. Optics & Laser Technology, 150, 108002(2022).

    [58] Nielsen M G, Gramotnev D K, Pors A et al. Continuous layer gap plasmon resonators[J]. Optics Express, 19, 19310-19322(2011).

    [59] Wu B, Liu Z Q, Liu G Q et al. An ultra-broadband, polarization and angle-insensitive metamaterial light absorber[J]. Journal of Physics D: Applied Physics, 53, 095106(2020).

    [60] Wang Q, Li R, Gao X F et al. Ultra-broadband absorber based on cascaded nanodisk arrays[J]. Chinese Physics B, 31, 040203(2022).

    [61] Cai H Y, Wang M W et al. Design of multilayer planar film structures for near-perfect absorption in the visible to near-infrared[J]. Optics Express, 30, 35219-35231(2022).

    [62] Wang W H, Wang H B, Yu P et al. Broadband thin-film and metamaterial absorbers using refractory vanadium nitride and their thermal stability[J]. Optics Express, 29, 33456-33466(2021).

    [63] Wang Y, Xuan X F, Zhu L et al. Design of ultra-broadband and high-absorption metamaterial solar absorber[J]. Chinese Journal of Lasers, 49, 0903001(2022).

    [64] He S J, Jiang X W. Dual channel polarization independent dielectric narrow bandwidth metamaterial absorber[J]. Laser & Optoelectronics Progress, 59, 0316005(2022).

    [65] Xie Z H, Qu W W, Deng H et al. Reverse design of terahertz metamaterial absorber[J]. Acta Optica Sinica, 43, 1316001(2023).

    Tools

    Get Citation

    Copy Citation Text

    Gongli Xiao, Kang Chen, Hongyan Yang, Jiarong Zhang, Miao Li, Xingpeng Liu, Zanhui Chen. High Absorptivity Solar Absorber Based on MIM Resonant Structure[J]. Acta Optica Sinica, 2024, 44(9): 0924001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Dec. 14, 2023

    Accepted: Feb. 5, 2024

    Published Online: May. 15, 2024

    The Author Email: Hongyan Yang (hyyang@guet.edu.cn)

    DOI:10.3788/AOS231934

    CSTR:32393.14.AOS231934

    Topics