Acta Laser Biology Sinica, Volume. 33, Issue 5, 408(2024)

L-methionine Biosynthesis and Regulatory Mechanisms in Bacteria

CUI Ying, SONG Kai, and HE Yawen*
Author Affiliations
  • State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(69)

    [1] [1] PASAMONTES A, GARCIA-VALLVE S. Use of a multi-way method to analyze the amino acid composition of a conserved group of orthologous proteins in prokaryotes[J]. BMC Bioinformatics, 2006, 7(1): 1-10.

    [2] [2] BROSNAN J T, BROSNAN M E. The sulfur-containing amino acids: an overview[J]. Journal of Nutrition, 2006, 136(6): 1636S.

    [3] [3] GRAY M J, WHOLEY W Y, JAKOB U. Bacterial responses to reactive chlorine species[J]. Annual Review of Microbiology, 2013, 67: 141-60.

    [4] [4] DELAYE L, BECERRA A, ORGEL L, et al. Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage[J]. Journal of Molecular Evolution, 2007, 64(1):15-32.

    [5] [5] BIGELOW D J, SQUIER T C. Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins[J]. Acta Biochimica et Biophysica Sinica, 2005, 1703(2): 121-134.

    [6] [6] VINCENT M S, EZRATY B. Methionine oxidation in bacteria: a reversible post-translational modification[J]. Molecular Microbiology, 2023, 119(2): 143-150.

    [7] [7] CAI M, LIU Z, ZHAO Z, et al. Microbial production of L-methionine and its precursors using systems metabolic engineering[J]. Biotechnology Advances, 2023, 69:108260.

    [8] [8] FONTECAVE M, ATTA M, MULLIEZ E. S-adenosylmethionine: nothing goes to waste[J]. Trends in Biochemical Sciences, 2004,29(5): 243-249.

    [9] [9] KNSTLER A, GULLNER G, DM A L, et al. The versatile roles of sulfur-containing biomolecules in plant defense: a road to disease resistance[J]. Plants, 2020, 9(12): 1705.

    [10] [10] JOCHIM A, SHI T, BELIKOVA D, et al. Methionine limitation impairs pathogen expansion and biofilm formation capacity[J]. Applied and Environmental Microbiology, 2019, 85(9): e00177-19.

    [11] [11] BOUBAKRI H, WAHAB M A, CHONG J, et al. Methionine elicits H2O2 generation and defense gene expression in grapevine and reduces Plasmopara viticola infection[J]. Journal of Plant Physiology, 2013, 170(18): 1561-1568.

    [13] [13] LEE H S, HWANG B J. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation[J]. Applied Microbiology and Biotechnology, 2003, 62(5/6): 459-467.

    [14] [14] DINKINS R D, REDDY M S S, MEURER C A, et al. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kD zein protein[J]. In vitro Cellular and Developmental Biology Plant, 2001, 37: 742-747.

    [15] [15] HACHAM Y, MATITYAHU I, SCHUSTER G, et al. Overexpression of mutated forms of aspartate kinase and cystathionine ‐synthase in tobacco leaves resulted in the high accumulation of methionine and threonine[J]. The Plant Journal, 2008, 54(2): 260-271.

    [16] [16] PANEL E F, HERMAN L. Safety and efficacy of L-methionine produced by fermentation with Corynebacterium glutamicum KCCM 80184 and Escherichia coli KCCM 80096 for all animal species[J]. EFSA Journal, 2019, 17(12): 5917.

    [17] [17] CHOI K R, JANG W D, YANG D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering[J]. Trends in Biotechnology, 2019, 37(8): 817-837.

    [18] [18] HUANG J F, SHEN Z Y, MAO Q L, et al. Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of L-methionine biosynthesis in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7(11): 2577-2589.

    [19] [19] NAKATANI T, OHTSU I, NONAKA G, et al. Enhancement of thioredoxin glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli[J]. Microbial Cell Factories, 2012, 11: 1-9.

    [21] [21] FERLA M P, PATRICK W M. Bacterial methionine biosynthesis[J]. Microbiology, 2014, 160(8): 1571-1584.

    [22] [22] BASTARD K, PERRET A, MARIAGE A, et al. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis[J]. Nature Chemical Biology, 2017, 13(8): 858-866.

    [23] [23] ZUBIETA C, ARKUSK A J, CAHOON R E, et al. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis[J]. Journal of Biological Chemistry, 2008, 283(12): 7561-7567.

    [24] [24] HWANG B J, YEOM H J, KIM Y, et al. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis[J]. Journal of Bacteriology, 2002, 184(5): 1277-1286.

    [25] [25] HWANG B J, PARK S D, KIM Y, et al. Biochemical analysis on the parallel pathways of methionine biosynthesis in Corynebacterium glutamicum[J]. Journal of Microbiology and Biotechnology, 2007, 17(6): 1010-1017.

    [26] [26] KRMER J O, WITTMANN C, SCHRDER H, et al. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum[J]. Metabolic Engineering, 2006, 8(4): 353-369.

    [27] [27] KAWANO Y, ONISHI F, SHIROYAMA M, et al. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2017, 101(18): 6879-89.

    [28] [28] GRUZDEV N, HACHAM Y, HAVIV H, et al. Conversion of methionine biosynthesis in Escherichia coli from trans- to direct-sulfurylation enhances extracellular methionine levels[J]. Microbial Cell Factories, 2023, 22(1): 151.

    [29] [29] IWAMA T, HOSOKAWA H, LIN W, et al. Comparative characterization of the oah2 gene homologous to the oah1 of Thermus thermophilus HB8[J]. Bioscience Biotechnology and Biochemistry, 2004, 68(6): 1357-1361.

    [30] [30] FOGLINO M, BORNE F, BALLY M, et al. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa[J]. Microbiology, 1995, 141(2): 431-439.

    [31] [31] ALAMINOS M, RAMOS J L. The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products[J]. Archives of Microbiology, 2001, 176: 151-154.

    [32] [32] PEJCHAL R, LUDWIG M L. Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication[J]. PLoS Biology, 2005, 3(2): e31.

    [33] [33] PRICE M N, DEUTSCHBAUER A M, ARKIN A P. Four families of folate-independent methionine synthases[J]. PLoS Genetics, 2021, 17(2): e1009342.

    [34] [34] LI K, LI G, BRADBURY L M T, et al. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli[J]. Biochemical Journal, 2016, 473(3): 277-284.

    [35] [35] SERRA A L, MARISCOTTI J F, BARRA J L, et al. Glycine betaine transmethylase mutant of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2002, 184(15): 4301-4303.

    [36] [36] BARRA L, FONTENELLE C, ERMEL G, et al. Interrelations between glycine betaine catabolism and methionine biosynthesis in Sinorhizobium meliloti strain 102F34[J]. Journal of Bacteriology, 2006, 188(20): 7195-7204.

    [37] [37] FU T M, ALMQVIST J, LIANG Y H, et al. Crystal structures of cobalamin-independent methionine synthase (MetE) from Streptococcus mutans: a dynamic zinc-inversion model[J]. Journal of Molecular Biology, 2011, 412(4): 688-697.

    [38] [38] FICK R J, CLAY M C, VANDER LEE L, et al. Water-mediated carbon-oxygen hydrogen bonding facilitates S-adenosylmethionine recognition in the reactivation domain of cobalamin-dependent methionine synthase[J]. Biochemistry, 2018, 57(26): 3733-3740.

    [39] [39] DEOBALD D, HANNA R, SHAHRYARI S, et al. Identification and characterization of a bacterial core methionine synthase[J]. Scientific Reports, 2020, 10(1): 2100.

    [40] [40] GOPINATH K, MOOSA A, MIZRAHI V, et al. Vitamin B12 metabolism in Mycobacterium tuberculosis[J]. Future Microbiology, 2013, 8(11): 1405-1418.

    [41] [41] DATTA S, KOUTMOS M, PATTRIDGE K A, et al. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor[J]. Proceedings of the National Academy of Sciences, 2008, 105(11): 4115-4120.

    [42] [42] KOUTMOS M, DATTA S, PATTRIDGE K A, et al. Insights into the reactivation of cobalamin-dependent methionine synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(44): 18527-18532.

    [43] [43] TAUROG R E, JAKUBOWSKI H, MATTHEWS R G. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase[J]. Biochemistry, 2006, 45(16): 5083-5091.

    [44] [44] TAUROG R E, MATTHEWS R G. Activation of methyltetrahydrofolate by cobalamin-independent methionine synthase[J]. Biochemistry, 2006, 45(16): 5092-5102.

    [45] [45] HONDORP E R, MATTHEWS R G. Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli[J]. Journal of Bacteriology, 2009,191(10): 3407-3410.

    [46] [46] HONDORP E R, MATTHEWS R G. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli[J]. PLoS Biology, 2004, 2(11): e336.

    [47] [47] VRONIQUE DE BERARDINIS, VALLENET D, CASTELLI V, et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1[J]. Molecular Systems Biology, 2008, 4(1): 174.

    [48] [48] FINN R D, BATEMAN A, CLEMENTS J, et al. Pfam: the protein families database[J]. Nucleic Acids Research, 2014, 42(1): 222-230.

    [49] [49] BRADBURY L M, ZIEMAK M J, EL BADAWI-SIDHU M, et al. Plant-driven repurposing of the ancient S-adenosylmethionine repair enzyme homocysteine S-methyltransferase[J]. Biochemical Journal, 2014, 463(2): 279-286.

    [50] [50] FIGGE R M. Amino acid biosynthesis-pathways, regulation and metabolic engineering[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 163-193.

    [51] [51] FRITSCH P S, URBANOWSKI M L, STAUFFER G V. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase[J]. Journal of Bacteriology, 2000, 182(19): 5539-5550.

    [52] [52] AUGUSTUS A M, REARDON P N, SPICER L D. MetJ repressor interactions with DNA probed by in-cell NMR[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13): 5065-5069.

    [53] [53] MARINCS F, MANFIELD I, STEAD J, et al. Transcript analysis reveals an extended regulon and the importance of protein-protein co-operativity for the Escherichia coli methionine repressor[J]. Biochemical Journal, 2006, 396(2): 227-234.

    [54] [54] HE Y Y, GARVIE C W, ELWORTHY S, et al. Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ[J]. Journal of Molecular Biology, 2002, 320(1): 39-53.

    [56] [56] MAMPEL J, SCHRDER H, HAEFNER S, et al. Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2005, 68(2): 228-236.

    [57] [57] REY D A, PHLER A, KALINOWSKI J. The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum[J]. Journal of Biotechnology, 2003, 103(1): 51-65.

    [58] [58] TANG D J, DU X, SHI Q, et al. A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA[J]. Nature Communications, 2020, 11(1): 2794.

    [59] [59] WANG J X, BREAKER R R. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine[J]. Biochemistry and Cell Biology, 2008, 86(2): 157-168.

    [60] [60] ZHANG J, FERR-D'AMAR A R. Structure and mechanism of the T‐box riboswitches[J]. Wiley Interdisciplinary Reviews: RNA, 2015, 6(4): 419-433.

    [61] [61] MCDANIEL B A M, GRUNDY F J, ARTSIMOVITCH I, et al. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA[J]. Proceedings of the National Academy of Sciences, 2003, 100(6): 3083-3088.

    [62] [62] ANDRE G, EVEN S, PUTZER H, et al. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum[J]. Nucleic Acids Research, 2008,36(18): 5955-5969.

    [63] [63] ZHANG J L, WANG D, LIANG Y W, et al. The Gram-negative phytopathogen Xanthomonas campestris pv. campestris employs a 5′UTR as a feedback controller to regulate methionine biosynthesis[J]. Microbiology, 2018, 164(9): 1146-1155.

    [64] [64] KUMAR D, GOMES J. Methionine production by fermentation[J]. Biotechnology Advances, 2005, 23(1): 41-61.

    [65] [65] SHIM J, SHIN Y, LEE I, et al. L-methionine production[J]. Amino Acid Fermentation, 2017: 153-177.

    [66] [66] DONG X, ZHAO Y, ZHAO J, et al. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis[J]. Journal of Industrial Microbiology and Biotechnology, 2016, 43(6): 873-885.

    [68] [68] BECKER J, ZELDER O, HFNER S, et al. From zero to hero: design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production[J]. Metabolic Engineering, 2011, 13(2): 159-168.

    [69] [69] LI H, WANG B S, LI Y R, et al. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine[J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(1): 75-88.

    [71] [71] ZHOU H Y, WU W J, XU Y Y, et al. Calcium carbonate addition improves L-methionine biosynthesis by metabolically engineered Escherichia coli W3110-BL[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 300.

    [73] [73] WANG L, GUO Y, SHEN Y, et al. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli[J]. Biotechnology Advances, 2024: 108353.

    [74] [74] WANDA D, RAINER F. Recombinant microorganism for the fermentative production of methionine: WO2012090021A1[P].2022-08-05.

    [75] [75] AUGER S, YUEN W, DANCHIN A, et al. The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination[J]. Microbiology, 2002,148(2): 507-518.

    Tools

    Get Citation

    Copy Citation Text

    CUI Ying, SONG Kai, HE Yawen. L-methionine Biosynthesis and Regulatory Mechanisms in Bacteria[J]. Acta Laser Biology Sinica, 2024, 33(5): 408

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 10, 2024

    Accepted: Dec. 10, 2024

    Published Online: Dec. 10, 2024

    The Author Email: Yawen HE (yawenhe@sjtu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2024.05.003

    Topics