Journal of Synthetic Crystals, Volume. 53, Issue 2, 258(2024)
First Principles Study on Mechanical Properties, Electronic Structure and Optical Properties of Ni, Cu, Zn Doped Tetragonal PbTiO3
[1] [1] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review[J]. Progress in Materials Science, 2015, 68: 1-66.
[2] [2] LIU Y, NI L H, REN Z H, et al. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3[J]. Chinese Physics B, 2012, 21(1): 016201.
[3] [3] SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550.
[4] [4] HUANG J, ZHANG X W, ZHAO C, et al. Research status of modification of lead titanate series functional ceramics and application of modified ceramics[J]. Materials for Mechanical Engineering, 2021, 45(6): 94-98 (in Chinese).
[5] [5] DENG P X, WEN Z Q, MA B, et al. Effect of volume strain on electronic structure and optical properties of cubic lead titanate[J]. Journal of Synthetic Crystals, 2022, 51(1): 85-91 (in Chinese).
[6] [6] SCOTT J F, PAZ DE ARAUJO C A. Ferroelectric memories[J]. Science, 1989, 246(4936): 1400-1405.
[7] [7] HOSSEINI S M, MOVLAROOY T, KOMPANY A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316-321.
[8] [8] ZHU Z Y, WANG B, WANG H, et al. First-principle study of ferroelectricity in PbTiO3/SrTiO3 superlattices[J]. Solid-State Electronics, 2006, 50(11/12): 1756-1760.
[9] [9] GE F F, WU W D, WANG X M, et al. The first-principle calculation of structures and defect energies in tetragonal PbTiO3[J]. Physica B: Condensed Matter, 2009, 404(20): 3814-3818.
[10] [10] CHEN X, TAN P F, ZHOU B H, et al. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2015, 647: 456-462.
[11] [11] GRABOWSKA E. Selected perovskite oxides: characterization, preparation and photocatalytic properties: a review[J]. Applied Catalysis B: Environmental, 2016, 186: 97-126.
[12] [12] OHNO T, TSUBOTA T, NAKAMURA Y, et al. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light[J]. Applied Catalysis A: General, 2005, 288(1/2): 74-79.
[13] [13] MORET M P, DEVILLERS M A C, WRHOFF K, et al. Optical properties of PbTiO3, PbZrxTi1-xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3[J]. Journal of Applied Physics, 2002, 92(1): 468-474.
[14] [14] HUSSIN N H, TAIB M F M, HASSAN O H, et al. Study of geometrical and electronic structure of lanthanum doped PbTiO3 and PbZrTiO3: first principles calculation[C]//AIP Conference Proceedings. Ho Chi Minh, Vietnam. Author(s), 2018.
[15] [15] NIU P J, YAN J L, MENG D L. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3[J]. Journal of Semiconductors, 2015, 36(4): 043004.
[16] [16] LI H G, YAN J L. Electronic structures and optical properties of N-doped tetragonal PbTiO3 with different doping sites[J]. Journal of Materials Science and Engineering, 2017, 35(1): 14-18 (in Chinese).
[17] [17] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
[18] [18] OKUNAKA S, TOKUDOME H, ABE R. Facile water-based preparation of Rh-doped SrTiO3 nanoparticles for efficient photocatalytic H2 evolution under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(28): 14794-14800.
[19] [19] XIN H, PANG Q, GAO D L, et al. Mn ions' site and valence in PbTiO3 based on the native vacancy defects[J]. Condensed Matter Physics, 2021, 24(2): 23705.
[20] [20] KUMA S, WOLDEMARIAM M M. Structural, electronic, lattice dynamic, and elastic properties of SnTiO3 and PbTiO3 using density functional theory[J]. Advances in Condensed Matter Physics, 2019, 2019: 1-12.
[21] [21] HACHEMI A, HACHEMI H, FERHAT-HAMIDA A, et al. Elasticity of SrTiO3 perovskite under high pressure in cubic, tetragonal and orthorhombic phases[J]. Physica Scripta, 2010, 82(2): 025602.
[22] [22] LI Z, GRIMSDITCH M, FOSTER C M, et al. Dielectric and elastic properties of ferroelectric materials at elevated temperature[J]. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1433-1438.
[23] [23] SGHI-SZAB G, COHEN R E, KRAKAUER H. First-principles study of piezoelectricity in tetragonal PbTiO3 and PbZr1/2Ti1/2O3[J]. Physical Review B, 1999, 59(20): 12771-12776.
[24] [24] PERDEW J P, WANG Y E. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249.
[25] [25] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.
[26] [26] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570.
[27] [27] ERNZERHOF M, BURKE K, PERDEW J P. Density functional theory, the exchange hole, and the molecular bond[M]//Theoretical and Computational Chemistry. Amsterdam: Elsevier, 1996: 207-238.
[28] [28] PERDEW J P, ERNZERHOF M, ZUPAN A, et al. Nonlocality of the density functional for exchange and correlation: physical origins and chemical consequences[J]. The Journal of Chemical Physics, 1998, 108(4): 1522-1531.
[29] [29] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[30] [30] TAIB M F M, YAAKOB M K, BADRUDIN F W, et al. First-principles comparative study of the electronic and optical properties of tetragonal (P4mm) ATiO3 (A=Pb, Sn, Ge)[J]. Integrated Ferroelectrics, 2014, 155(1): 23-32.
[31] [31] WANG Q J, WANG J B, ZHONG X L, et al. Magnetism mechanism in ZnO and ZnO doped with nonmagnetic elements X (X=Li, Mg, and Al): a first-principles study[J]. Applied Physics Letters, 2012, 100(13): 673-677.
[32] [32] CHEN H, LI X C, WAN R D, et al. A DFT study on modification mechanism of (N, S) interstitial co-doped rutile TiO2[J]. Chemical Physics Letters, 2018, 695: 8-18.
[33] [33] BOUHEMADOU A. First-principles study of structural, electronic and elastic properties of Nb4AlC3[J]. Brazilian Journal of Physics, 2010, 40(1): 52-57.
[34] [34] CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275-1281.
[35] [35] VOIGT W. Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), edited by bg teubner and jw edwards, leipzig berlin[J]. Ann Arbor, Mich, 1928.
[36] [36] REUSS A. Berechnung der fliegrenze von mischkristallen auf grund der plastizittsbedingung für einkristalle[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49-58.
[37] [37] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354.
[38] [38] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry[J]. Journal of Applied Physics, 1980, 51(3): 1520-1524.
[39] [39] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843.
[40] [40] YADAV H O. Optical and electrical properties of sol-gel derived thin films of PbTiO3[J]. Ceramics International, 2004, 30(7): 1493-1498.
[41] [41] GAO Y, DONG H T, ZHANG X K, et al. First-principle study on structure, electronic and optical properties of (AlxGa1-x)2O3[J]. Journal of Synthetic Crystals, 2023, 52(9): 1674-1680+1719 (in Chinese).
Get Citation
Copy Citation Text
WANG Yunjie, ZHANG Zhiyuan, WEN Dulin, WU Zhencheng, SU Xin. First Principles Study on Mechanical Properties, Electronic Structure and Optical Properties of Ni, Cu, Zn Doped Tetragonal PbTiO3[J]. Journal of Synthetic Crystals, 2024, 53(2): 258
Category:
Received: Aug. 2, 2023
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Xin SU (suxin_phy@sina.com)
CSTR:32186.14.