High Power Laser and Particle Beams, Volume. 37, Issue 4, 043006(2025)

Construction and evaluation method of unmanned aerial vehicle faults simulation dataset

Yicheng Wang, Mengjuan Chai, Daojie Yu*, Yijie Bai, Liyue Liang, Tao Li, Jiale Zhou, Jianping Du, and Zhenning Yao
Author Affiliations
  • School of Information Systems Engineering, Information Engineering University, Zhengzhou 450002, China
  • show less
    References(26)

    [2] Wang Xiaofeng, Mao Deqiang, Feng Shangcong. Review on modern fault diagnosis technologies[J]. China Measurement & Test, 39, 93-98(2013).

    [3] Yuan Jie, Wang Fuli, Wang Shu. A fault diagnosis approach by D-S fusion theory and hybrid expert knowledge system[J]. Acta Automatica Sinica, 43, 1580-1587(2017).

    [5] Li Han, Xiao Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 26, 1-9(2011).

    [6] [6] Baskaya E, Bronz M, Delahaye D. Fault detection & diagnosis f small UAVs via machine learning[C]2017 IEEEAIAA 36th Digital Avionics Systems Conference (D). 2017: 16.

    [7] [7] Bondyra A, Gasi P, Gardecki S, et al. Fault diagnosis condition moniting of UAV rot using signal processing[C]2017 Signal Processing: Algithms, Architectures, Arrangements, Applications (SPA). 2017: 233238.

    [9] [9] Chen Yuepeng, Zhang Cong, Zhang Qingyong, et al. UAV fault detection based on GABP neural wk[C]2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). 2017: 806811.

    [10] [10] Sadhu V, Zonouz S, Pompili D. Onboard deeplearningbased unmanned aerial vehicle fault cause detection identification[C]2020 IEEE International Conference on Robotics Automation (ICRA). 2020: 52555261.

    [14] [14] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778.

    [15] Liao Jingxiao, Dong Hangcheng, Sun Zhiqi et al. Attention-embedded quadratic network (Qttention) for effective and interpretable bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 72, 3511113(2023).

    [17] Antonini A, Guerra W, Murali V et al. The blackbird UAV dataset[J]. The International Journal of Robotics Research, 39, 1346-1364(2020).

    [19] Keipour A, Mousaei M, Scherer S. ALFA: a dataset for UAV fault and anomaly detection[J]. The International Journal of Robotics Research, 40, 515-520(2021).

    [21] [21] Baskett B. Aeronautical design stard perfmance specification hling qualities requirements f military rotcraft[D]. Alabama: United States Army Aviation Missile Comm Aviation Engineering Dierctate Redstone Arsenal, 2000.

    [22] Miao Jianguo, Wang Jianyu, Zhang Heng. Review of the development of fault diagnosis technology for unmanned aerial vehicle[J]. Chinese Journal of Scientific Instrument, 41, 56-69(2020).

    [23] [23] Jun Wang, Tian Yuyang. Fault tolerant control of quadrot UAV based on suppt vect machine[C]2019 5th International Conference on Control Science Systems Engineering (ICCSSE). 2019: 1013.

    [24] Wang Lina, Liu Zhenbao, Yuan Jinbiao. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 49, 2395-2405(2023).

    [25] He Kai, Yu Daojie, Wang Dong et al. Graph attention network-based fault detection for UAVs with multivariant time series flight data[J]. IEEE Transactions on Instrumentation and Measurement, 71, 3530213(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yicheng Wang, Mengjuan Chai, Daojie Yu, Yijie Bai, Liyue Liang, Tao Li, Jiale Zhou, Jianping Du, Zhenning Yao. Construction and evaluation method of unmanned aerial vehicle faults simulation dataset[J]. High Power Laser and Particle Beams, 2025, 37(4): 043006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 23, 2024

    Accepted: Dec. 11, 2024

    Published Online: May. 15, 2025

    The Author Email: Daojie Yu (yudj2003@163.com)

    DOI:10.11884/HPLPB202537.240340

    Topics