The Journal of Light Scattering, Volume. 36, Issue 3, 220(2024)
Principles and technological development history of time-gated Raman spectrometers and their applications
[1] [1] Connally R, Piper J. Solid-state time-gated luminescence microscope with ultraviolet light-emitting diode excitation and electron-multiplying charge-coupled device detection[J]. Journal of Biomedical Optics, 2008, 13(3): 034022.
[2] [2] Panasenko D, Sun P-C, Alie N, et al. Single-shot generation of a sonogram by time gating of a spectrally decomposed ultrashort laser pulse[J]. Applied Optics, 2002,41: 5185.
[3] [3] Van Duyne R P, Jeanmaire D L, Shriver D F. Mode-locked laser Raman spectroscopy. A new technique for the rejection of interfering background luminescence signals[J]. Analytical Chemistry, 1974, 46: 213-222.
[4] [4] Lord, R. F. R. S., LIV. On the calculation of the frequency of vibration of a system in its gravest mode, with an example from hydrodynamics. Philosophical Magazine Series 5 1899, 47: 375.
[5] [5] Kemmer N. Electrodynamics of Continuous Media[J]. Physics Bulletin, 2015, 12(6): 172-174.
[6] [6] Einstein A. Theory of the opalescence of homogenous fluids and liquid mixtures near the critical state[J]. Annals of Physics. 1910, 3: 1275-1295.
[7] [7] Brillouin L. Information theory and the divergent sums in physics[J]. Annals of Physics, 1958, 5(3): 243-250.
[8] [8] GROSSE. Modification of Light Quanta by Elastic Heat Oscillations in Scattering Media[J]. Nature, 1932, 129(3263): 722-723.
[9] [9] Raman C V, Krishnan K S. The Negative Absorption of Radiation[J]. Nature, 1928, 122(3062): 12-13.
[10] [10] Long D A. RAMAN SPECTROSCOPY[J]. Characterization of Chemical Purity, 1971: 149-161.
[14] [14] Esmonde-White K A, Cuellar M, Uerpmann C, et al. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing[J]. Analytical & Bioanalytical Chemistry, 2016, 409(3): 1-13.
[15] [15] Kostamovaara J, Tenhunen J, Martin K?gler, et al. Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD[J]. Optics Express, 2013, 21(25): 31632-31645.
[16] [16] Smith E, Dent G. Modern Raman Spectroscopy: A Practical Approach[J]. proteomics, 2005.
[17] [17] Kgler M. Advanced Raman Spectroscopy for Bioprocess Monitoring[J]. 2018.
[18] [18] Kudryavtsev D A, Timofey М Fedotenko, Koemets E G, et al. Raman Spectroscopy Study on Chemical Transformations of Propane at High Temperatures and High Pressures[J]. Scientific Reports,2020, 10: 1-10.
[19] [19] Birch D J S, Imhof R E. Time-Domain Fluorescence Spectroscopy Using Time-correlated Single-Photon Counting[J]. Topics in Fluorescence Spectroscop,2002, 1: 1-95.
[20] [20] Yonzon C R, Lyandres O, Shah N C, et al. Glucose Sensing with Surface-Enhanced Raman Spectroscopy[J]. Springer Berlin Heidelberg, 2006.
[21] [21] Kneipp J, Kneipp H, Kneipp K. ChemInform Abstract: SERS — A Single-Molecule and Nanoscale Tool for Bioanalytics[J]. Cheminform, 2010, 39(32): 1052-1060.
[22] [22] Kgler M. Advanced Raman Spectroscopy for Bioprocess Monitoring[J]. 2018.
[23] [23] Ekins S. Phamacentical Applicarions of RamanSpectroscopy[J]. 2008.
[24] [24] Wei D, Chen S, Liu Q. Review of Fluorescence Suppression Techniques in Raman Spectroscopy[J]. Applied Spectroscopy Reviews, 2015, 50(5): 387-406.
[25] [25] Bottger U, et al. shifted excitation Raman difference spectroscopy applied to extratemestrial panicles returned from the asterid ltokawa[J]. Planet, Space Sei., 2017, 144: 106-111.
[26] [26] Maiwald M, Miller A, Supf B, et al. A portable shifted excitation Raman difference spectroscopysystem: device and field demonstration[J]. Journal of Raman Spectroscopy, 2016, 47: 1180-1184.
[27] [27] Sowoidnich K, Kronfeldt H-D. Fluorescencc rejection by shifted excitation Raman difference spectroscopy at multiple wavelengths for the investigation of biological samples[J]. ISRN Spectnsc. 2012, 1: 11
[28] [28] Gaft M, Nagli L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746.
[29] [29] Guo S, Bocklitz T, Popp J. Optimization of Raman-spectrm baseline correction in biologica[J]. application Analvsr, 2016, 141: 2396-2404.
[30] [30] Zigba-Palus J, Michalska A. Photobleaching as auseful technigue in reducing of fluorescence in Raman spectra of blue automobile paint samples[J]. Vibrational Spectroscopy, 2014, 74: 6-12.
[31] [31] Howard J, Everall N J, Jackson R W, et al. Fluorescence rejection in Raman spectroscopy using a synchronously pumped, cavity-dumped dye laser and gated photon counting[J]. Journal of Physics E: Scientific Instruments, 1986, 19: 34-43.
[32] [32] Matousek P, Towrie M, Parker A W, et al. Fluorescence suppression in kaman spectroscopy using a high perfomance picosecond gate[J]. Journal of Raman Spectroscopy, 200l, 32: 983-988.
[33] [33] Ariunbold G, Altangerel N. Quantitative interpretation of time-resolved coherent anti-StokesRaman spectroscopy with all Gaussian pulses[J]. Journal of Raman Spectroscopy, 2017,48: 10-17.
[34] [34] Steuwe C, Kaminski C F, Baumberg J J, et al. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces[J]. Nano Letters, 2011, 11(12): 5339.
[35] [35] Hua X, Voronine D V, Ballmann C W, et al. Nature of surface-enhanced coherent Raman scattering[J]. Phys.rev.a, 2014, 89(4): 1-17.
[36] [36] VNamboodiri, et al. Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine[J]. Vibrational Spectroscopy, 2011, 56(1): 9-12.
[37] [37] Kostamovaara J, Tenhunen J, Martin K?gler, et al. Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD[J]. Optics Express, 2013, 21(25): 31632-31645.
[38] [38] E Hanlon, R Manoharan, T W Koo, et al. Prospects for in vivo Raman spectroscopy[J]. Physics in Medicine & Biology, 2000, 45: 2-7.
[39] [39] Shimada R, Nakamura T, Ozawa T. Parallelized shifted-excitation Raman difference spectroscopy for fluorescence rejection in a temporary varying system[J]. Journal of biophotonics, 2019, 12(12): e201960028.
[40] [40] Yaney P P. The pulsed laser and gated detection in Raman spectroscopy - a survey of the spectra of common substances including studies of adsorbed benzene[J]. Journal of Raman Spectroscopy, 1976, 5(3): 219-241.
[41] [41] Nissinen I, Nissinen J, KerNen P, et al. On the effects of the time gate position and width on the signal-to-noise ratio for detection ofRaman spectrum in a time-gated CMOS single-photon avalanche diode based sensor[J]. Sensors & Actuators B Chemical, 2016, 241: 1145-1152.
[42] [42] Wirth M J, Chou S H. Comparison of time and frequency domain methods for rejecting fluorescence from Raman spectra[J]. Analytical Chemistry, 1988, 60(18): 1882-1886.
[43] [43] Blacksberg J, Alerstam E, Cochrane C J, et al. Miniature high-speed, low-pulse-energy picosecond Raman spectrometer for identification of minerals and organics in planetary science[J]. Applied Optics, 2020, 59(2): 433.
[44] [44] Blacksberg J, Rossman G R, Gleckler A. Time-resolved Raman spectroscopy for in situ planetary mineralogy[J]. Applied Optics, 2010, 49(26): 4951-4962.
[45] [45] Blacksberg J, Alerstam E, Maruyama Y, et al. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array[J]. Applied Optics, 2016, 55(4): 739-748.
[46] [46] Schaefer H E, Würschum R, Birringer R, et al. Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy[J]. Physical Review B, 1988, 38(14): 9545-9554.
[47] [47] GGSiu, et al. Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature[J]. Physical Review B, 1999, 59(4): 3173-3173.
[48] [48] Bedja I, Hotchandani S, Carpentier R, et al. Chlorophyll b-modified nanocrystalline SnO2 semiconductor thin film as a photosensitive electrode[J]. Journal of Applied Physics, 1994, 75(10): 5444-5446.
[49] [49] ian, Zuo, Cunyi, et al. Study of the Raman spectrum of nanometer SnO2[J]. Journal of Applied Physics, 1994, 75: 835.
[50] [50] Yu K N, Xiong Y, Liu Y, et al. Microstructural change of nano-SnO2 grain assemblages with the annealing temperature[J]. Phys.rev.b, 1997, 55(4): 2666-2671.
[51] [51] Hirata T, Ishioka K, Kitajima M, et al. Concentration dependence of optical phonons in the TiO2-SnO2 system[J]. Phys.rev.b, 1996, 53(13): 8442.
[52] [52] Pandey G, Nakamura T, Singh R P. Investigation into the Correlation Between Viscoelastic Properties of Fingernails and Osteoporosis[J]. 2008.
[53] [53] Towler M R, Wren A, Rushe N, et al. Raman spectroscopy of the human nail: A potential tool for evaluating bone health[J]. Journal of Materials Science Materials in Medicine, 2007, 18(5): 759.
[54] [54] Trkula M, Keller R A. Reduction of Raman background in laser-induced fluorescence by second harmonic detection[J]. Analytical Chemistry, 1985, 57(8): 1663-1669.
[55] [55] Van Duyne R P, Jeanmaire D L, Shriver D F. Mode-locked laser Raman. Spectroscopy: A new technique for the rejection of interfering background luminescence signals[J]. Analytical Chemistry, 1974, 46: 213-222.
[56] [56] Harris J M, Chrisman R W, Lytle F E, et al. Sub-nanosecond time-resolved rejection of fluorescence from Raman spectra[J]. Analytical Chemistry, 1976, 48(13): 1937-1943.
[57] [57] Panasenko D, Sun P C, Alic N, et al. Single-shot generation of a sonogram by time gating of a spectrally decomposed ultrashort laser pulse[J]. Applied Optics, 2002, 41(24): 5185-5190.
[58] [58] Deffontaine A, Delhaye M, Bridoux M. Pulsed multichannel Raman technigue[J]. Rev. Phys. Appl, 1985,19: 415-421.
[59] [59] Watanabe J, Kinoshita S, Kushida T. Fluorescence rejection in Raman spectroscopy by a gated single-photon counting method[J]. Review of Scientific Instruments, 1985, 56(6): 1195-1198.
[60] [60] Everall N, Jackson R W, Howard J, et al. Fluorescence rejection in Raman spectroscopy using a gated intensified diode array detector[J]. Journal of Raman Spectroscopy, 1986, 17(5): 415-423.
[61] [61] Petrich J W, Martin J L, Houde D, et al. Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy) hemoglobin[J]. Biochemistry, 1987, 26(24): 7914-23.
[62] [62] Tahara T, Toleutaev B N, Hiro-o Hamaguchi. Picosecond time-resolved multiplex coherent anti-Stokes Raman scattering spectroscopy by using a streak camera: Isomerization dynamics of all-trans and 9-cis retinal in the lowest excited triplet state[J]. Journal of Chemical Physics, 1994, 100(2): 786-796.
[63] [63] Moon J A, Mahon R, Duncan M D, et al. Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification[J]. Optics Letters, 1994, 19(16): 1234-1236.
[64] [64] Yoshizawa M, Kurosawa M. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering[J]. physical review a, 1999, 61(12): 1418-1432.
[65] [65] Matousek P, Towrie M, Stanley A, et al. Efficient rejection of fluorescence from Raman spectra using picosecond Ken gating[J]. Appl. Spectrosc., 1999, 53: 1485-1489.
[66] [66] Kostamovaara J, Tenhunen J, Martin K?gler, et al. Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD[J]. Optics Express, 2013, 21(25): 31632-31645.
[67] [67] Perelman L T, Wu J, Wang Y, et al. Optical imaging using time gated scattered light: US19990347050[P]. US6321111B1
[68] [68] Duncan M D, Mahon R, Tankersley L L, et al. Time-gated imaging through scattering media using stimulated Raman amplification[J]. Optics Letters, 1991, 16(23): 1868-1870.
[69] [69] Lecomte S, Wackerbarth H, Soulimane T, et al. Time-Resolved Surface-Enhanced Resonance Raman Spectroscopy for Studying Electron-Transfer Dynamics of Heme Proteins[J]. Journal of the American Chemical Society, 1998, 120(29): 283-318.
[70] [70] Bell, Steven E J Tutorial review. Time-resolved resonance Raman spectroscopy[J]. Analyst, 1996, 121(11): 107-120.
[71] [71] Nissinen I, Nissinen J, Lansman A K, et al. A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy[J]. Eur Solid-State Device Res. Conf., 2011,1: 375-378.
[72] [72] Blacksberg J, Maruyama Y, Charbon E, et al. Fast single-photon avalanche diode arrays for laser Raman spectroscopy[J]. Optics Letters, 2011, 36(18): 3672.
[73] [73] ENGSTROM, Ralph W. Multiplier Photo-Tube Characteristics: Application to Low Light Levels[J]. Josa/37/6/josa Pdf, 1947, 37(6): 420.
[74] [74] Rank D H. Polarization and Intensity Measurement in Raman Spectra by the Photoelectric Method[J]. J Opt Soc Am, 1947, 37(10): 798-803.
[75] [75] Martini F D, Wacks K P. Photomultiplier Gate for Stimulated-Spontaneous Light Scattering Discrimination[J]. Review of Scientific Instruments, 1967, 38(7): 866-868.
[76] [76] Burgess S, Shepherd I W. Fluorescence suppression in time-resolved Raman spectra[J]. Journal of Physics E Scientific Instruments, 1977, 10(6): 617-620.
[77] [77] Deffontaine A, Brdoux M, Delhaye M. The third generation of multichannel Raman spectrometers[J]. Rev. Phys. Appl., 1984, 19: 415-21.
[78] [78] Campion A, Woodruff W H. Multichannel Raman spectroscopy[J]. Analytical Chemistry,1987, 59: 1299-1308.
[79] [79] Courtney S H, Wilson W L. Multichannel time-correlated single photon counting: Spectroscopy and time-gated imaging using a resistive anode photomultiplier tube[J]. Review of Scientific Instruments, 1991, 62(9): 2100-2104.
[80] [80] A. Lehmann c, A. Britting c, W. Eyrich c, et al. Improved lifetime of microchannel-plate PMTs[J]. Nuclear Instruments & Methods in Physics Research, 2020, 958(Apr.1): 162357.1-162357.4.
[81] [81] SpinelliA., GhioniA M., CovaD S., et al. Avalanche detector with ultraclean response for time-resolved photon counting[J]. Quantum Electronics, IEEE Journal of, 1998,34: 817-821.
[82] [82] Prokazov Y, Turbin E, Weber A, et al. Position sensitive detector for fluorescence lifetime imaging[J]. Journal of Instrumentation, 2014, 9(12): 12015-12015.
[83] [83] Baker R J, Johnson B P. Sweep circuit design for a picosecond streak camera[J]. Measurement Science & Technology, 1994, 5(4): 408.
[84] [84] Li Z Y. Miniaturization of Time-Gated Raman Spectrometer with a Concave Grating and a CMOS Single Photon Avalanche Diode Miniaturization of time-gated Raman spectrometer with a concave grating and a CMOS single photon avalanche diode Ph. D Thesis[M]. McMaster University, 2015.
[85] [85] Zong C, Chen C J, Zhang M, et al. Transient electrochemical surface-enhanced Raman spectroscopy: a millisecond time-resolved study of an electrochemical redox process[J]. Journal Of The American Chemical Society, 2015, 137: 11768-11774.
[86] [86] Golcuk K, Mandair G S, Callender A F, et al. Is photobleaching necessary for Raman imaging of bone tissue using a green laser[J]. BIOCHIMICA ET BIOPHYSICA ACTA, 2006, 1758(7): 868-873.
[87] [87] Rochas A, Gani M, Furrer B, et al. Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology[J]. Review of Scientific Instruments, 2003, 74(7): 3263-3270.
[88] [88] Bruschini C, Homulle H, Antolovic I M, et al. Author Correction: Single-photon avalanche diode imagers in biophotonics: review and outlook[J]. Light: Science & Applications, 2020, 9(1): 1-28.
[89] [89] I Nissinen, J Nissinen, AK L?nsman, et al. A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy[J] Eur. Solid-State Device Res. Conf., 2011,1: 375-378.
[90] [90] Smith J A, Dhulla V H, Mukherjee S S, et al. Evaluation of an Operational Concept for Improving Radiation Tolerance of Single Photon Avalanche Diode (SPAD) Arrays[J]. IEEE Transactions on Nuclear Science, 2020, PP(99): 1.
[91] [91] Düppenbecker P M, Haagen R, Lodomez S, et al. Method for measuring the sub-pixel light distribution of scintillation detectors with digital SiPMs Peter[J]. IEEE Nuclear Science Symp. Conf. Record 2011: 2301-2302.
[92] [92] Mora D, Sieno D, Re, et al. Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review[J]. Applied Sciences, 2020, 10(3): 1101.
[93] [93] Liu C, Berg R W. Determining the Spectral Resolution of a Charge-Coupled Device (CCD) Raman Instrument[J]. Applied Spectroscopy, 2012, 66(9): 1034-1043.
[94] [94] Nissinen I, Nissinen J, Kernen P, et al. A $16imes256$ SPAD Line Detector With a 50-ps, 3-bit, 256-Channel Time-to-Digital Converter for Raman Spectroscopy[J]. IEEE Sensors Journal, 2019, 18(9): 3789-3798.
[95] [95] Maruyama, Y, Blacksberg, et al. A 1024 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS[J]. Solid-State Circuits Journal of, 2014, 49(1): 179-189.
[96] [96] Li Z, Deen M J. Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD[J]. Optics Express, 2014, 22(15): 18736-18747.
[97] [97] Heilala B, MKinen A, Nissinen I, et al. Evaluation of time-gated Raman spectroscopy for the determination of nitric, sulfuric and hydrofluoric acid concentrations in pickle liquor[J]. Microchemical Journal, 2018, 137: 342-347.
[98] [98] Gyakwaa F, Aula M, Alatarvas T, et al. Applicability of Time-Gated Raman Spectroscopy in the Characterisation of Calcium-Aluminate Inclusions[J]. ISIJ International, 2019, 59: 1846-1852.
[99] [99] Wang Z, Shu Q, Chou K. Structure of CaO-B2O3-SiO2-TiO2 Glasses: a Raman Spectral Study[J]. Isij International, 2011, 51(7): 1021-1027.
[100] [100] Kai, Zheng, et al. Raman spectroscopic study of the structural properties of CaO-MgO-SiO2-TiO2 slags[J]. Journal of Non Crystalline Solids, 2013, 376: 209-215.
[101] [101] Huang W J, Zhao Y H, Yu S, et al. Viscosity property and structure analysis of FeO-SiO2-V2O3- TiO2-Cr2O3 slags[J]. ISIJ Int., 2016, 56: 594-601.
[102] [102] Park J H. Structure-Property Relationship of CaO-MgO-SiO2 Slag: Quantitative Analysis of Raman Spectra[J]. Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science, 2013, 59: 9-15.
[103] [103] Koivikko N, Laitinen T, Mouammine A, et al. Catalytic Activity Studies of Vanadia/Silica-Titania Catalysts in SVOC Partial Oxidation to Formaldehyde: Focus on the Catalyst Composition[J]. Catalysts, 2018, 8(2): 56.
[104] [104] Assal Z E, Ojala S, Zbair M, et al. Catalytic abatement of dichloromethane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies[J]. Journal of Cleaner Production, 2019, 228: 814-823.
[105] [105] Tanskanen P, Heilala B, Kurki L. On-line monitoring of spodumene heat treatment process with time-gated Raman spectroscopy[C]. International Symposium on Process Mineralogy.2019.
[106] [106] Macleod N A, Matousek P. Emerging Non-invasive Raman Methods in Process Control and Forensic Applications[J]. Pharmaceutical Research, 2008, 25(10): 2205-2215.
[107] [107] C Eliasson, M Claybourn, P Matousek. Deep Subsurface Raman Spectroscopy of Turbid Media by a Defocused Collection System[J]. Applied Spectroscopy, 2016, 61(10): 1123-1127.
[108] [108] Gal-Or E, Gershoni Y, Scotti G, et al. Chemical analysis using 3D printed glass microfluidics[J]. Analytical methods, 2019, 11(13): 1802-1810.
[109] [109] Dou J, Xu W, Koivisto J J, et al. Characteristics of Hot Water Extracts from the Bark of Cultivated Willow (Salix sp.)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5566-5573.
[110] [110] Yanagisawa, Sachiko, Deshpande, et al. Improved stopped-flow time-resolved resonance Raman spectroscopy device for studying enzymatic reactions[J]. Journal of Raman Spectroscopy: An International Journal for Original Work in All Aspects of Raman Spectroscopy, Including Higher Order Processes, and Also Brillouin- and Rayleigh Scattering, 2017, 48: 680-685.
[111] [111] Virtanen T, Reinikainen S P, KGler M, et al. Real-time fouling monitoring with Raman spectroscopy[J]. Journal of Membrane Science, 2016, 525: 312-319.
[112] [112] Mesu J G, Visser T, Soulimani F, et al. Infrared and Raman spectroscopic study of pH-induced structural changes of L-histidine in aqueous environment[J]. Vibrational Spectroscopy, 2005, 39(1): 114-125.
[113] [113] Kuball M, Riedel G J, Pomeroy J W, et al. Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy[J]. IEEE Electron Device Letters, 2007, 28: 86-89.
[114] [114] Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2010, 368: 3167-3191.
[115] [115] Fotso Gueutue E S, Canizares A, Simon P, et al. Nanosecond time-resolved Raman spectroscopy for solving some Raman problems such as luminescence or thermal emission[J]. J. Raman Spectrosc.,2018, 49: 822-829.
[116] [116] Hooijschuur J H, Iping Petterson I E, Davies G R, et al. Time resolved Raman spectroscopy for depth analysis of multi-layered mineral samples[J]. Journal of Raman Spectroscopy, 2013, 44(11): 1540-1547.
[117] [117] Garcia C S, Abedin M N, Ismail S, et al. Study of minerals, organic, and biogenic materials through time-resolved Raman spectroscopy[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7312.
[118] [118] Romppanen S, Hkknen H, Kekkonen J, et al. Time-gated Raman and laser-induced breakdown spectroscopy in mapping of eudialyte and catapleiite[J]. Journal of Raman Spectroscopy, 2019, 50: 1462-1469.
[119] [119] Kekkonen J, Finnila M A J, Heikkila J, et al. Chemical imaging of human teeth by a time-resolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor[J]. Analyst, 2019, 144: 6089-6097.
[120] [120] Usai A, Finlayson N, Gregory C D, Campbell C and Henderson R K Separating fluorescence from Raman spectra using a CMOS SPAD TCSPC line sensor for biomedical applications[J]. Proc. SPIE, 2019, 10873: 108730R.
[121] [121] Knorr F, Smith Z J, Wachsmann-Hogiu S. Development of a time-gated system for Raman spectroscopy of biological samples[J]. Optics Express, 2010, 18(19): 20049.
[122] [122] Morris M D, Draper E R C, Goodship A E, et al. Picosecond time-gated Raman spectroscopy for transcutaneous evaluation of bone composition[J]. Proc. SPIE, 2005, 1: 344.
[123] [123] Kekkonen J, Talala T, Nissinen J, et al. On the Spectral Quality of Time-Resolved CMOS SPAD-Based Raman Spectroscopy with High Fluorescence Backgrounds[J]. IEEE Sensors Journal, 2020, PP(99): 1.
[124] [124] K?gler M, Paul A, Anane E, et al. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples[J] Biotechnol. Prog.2018, 34: 1533-1542.
[125] [125] Zeng F, Mou T, Zhang C, et al. Paper-based SERS analysis with smartphones as Raman spectral analyzers[J]. Analyst,2019, 144: 137-142.
[126] [126] Mu T, Li S, Feng H, et al. High-sensitive smartphone-based Raman system based on cloud network architecture[J]. IEEE J. Sel. Top. Quantum Electron, 2019, 25: 1-7.
[127] [127] Nelson A E 2020 The supercam instrument for the Mars 2020 Rover: IEEE Aerospace Conf. 2020 vol 15 (Los Alamos, NM, United States) (Los Alamos, NM: Los Alamos National Lab(LANL).
[128] [128] Uusitalo S. Surface-enhanced Raman spectroscopy for beverage spoilage yeasts and bacteria detection with patterned substrates and gold nanoparticles (Conference Presentation)[J]. Proc. SPIE, 2019, 10907: 1090703.
[129] [129] KGler M, Ryabchikov Y V, Uusitalo S, et al. Bare laser-synthesized Au-based nanoparticles as non-disturbing SERS probes for Bacteria Identification[J]. Journal of Biophotonics, 2018, 28: 303-325.
[130] [130] Harz M, Rsch P, Popp J. Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single-cell level[J]. Cytometry Part A, 2009, 75A(2): 104-113.
[131] [131] Jarvis R M, Goodacre R. Characterisation and identification of bacteria using SERS[J]. Chemical Society Reviews, 2008, 37(5): 931-936.
[132] [132] Buckley K, Ryder A G. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review[J]. Applied Spectroscopy, 2017, 71(6): 1085.
[133] [133] Schlucker S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications[J]. Angewandte Chemie, 2014, 53: 4756-4795.
[134] [134] Petry R, Schmitt M, Jürgen Popp. Raman Spectroscopy—A Prospective Tool in the Life Sciences[J]. Chemphyschem, 2003, 4(1): 14-30.
[135] [135] Witkowska E, Korsak D, Kowalska A, et al. Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry[J]. Analytical & Bioanalytical Chemistry, 2017, 2(6): 1-13.
[136] [136] Kgler M, Itkonen J, Viitala T, et al. Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS)[J]. Scientific Reports, 2020, 10(1): 1-11.
[137] [137] Hobro A J, Lendl B. Stand-off Raman spectroscopy[J]. Trac Trends in Analytical Chemistry, 2009, 28(11): 1235-1242.
[138] [138] Gares K L, Hufziger K T, Bykov S V, et al. Review of explosive detection methodologies and the emergence of standoff deep UV resonance Raman[J]. Journal of Raman Spectroscopy, 2016, 47(1): 124-141.
[139] [139] Sadate S, Kassu A, Farley C W, et al. Standoff Raman measurement of nitrates in water Remote Sens[J]. Model. Ecosyst. Sustain. VIII,2011, 8156: 81560D.
[140] [140] Hirschfeld, Tomas. Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy[J]. Applied Physics Letters, 1973, 22(1): 38-40.
[141] [141] Skulinova M. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration Planet[J]. Space Sci., 2014, 92: 88-100.
[142] [142] Kekkonen J, Nissinen J, Kostamovaara J, et al. Distance-Resolving Raman Radar Based on a Time-Correlated CMOS Single-Photon Avalanche Diode Line Sensor[J]. Sensors, 2018, 18(10): 3200.
[143] [143] Xia J, Yao Q, Zhu L, et al. Performance analysis and small signal identification of time-resolved stand-off Raman spectroscopy system[J] Vibrational Spectroscopy, 2019, 102: 16-23.
[144] [144] Gulati K K, Gulia S, Gambhir T, et al. Standoff Detection and Identification of Explosives and Hazardous Chemicals in Simulated Real Field Scenario using Time Gated Raman Spectroscopy[J]. Defence Science Journal, 2019, 69(4): 342-347.
Get Citation
Copy Citation Text
LIU Yulong, GUO Yanping, CHANG Ruixue, ZHAO Yongan. Principles and technological development history of time-gated Raman spectrometers and their applications[J]. The Journal of Light Scattering, 2024, 36(3): 220
Category:
Received: Jun. 28, 2024
Accepted: Nov. 21, 2024
Published Online: Nov. 21, 2024
The Author Email: Yulong LIU (ylliu@aphy.iphy.ac.cn)