Journal of Semiconductors, Volume. 41, Issue 11, 111403(2020)

Error suppression techniques for energy-efficient high-resolution SAR ADCs

Jiaxin Liu1, Xiyuan Tang2, Linxiao Shen2, Shaolan Li3, Zhelu Li2,4, Wenjuan Guo2, and Nan Sun1,2
Author Affiliations
  • 1Department of Electrical Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
  • 2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78712, USA
  • 3School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta 30313, USA
  • 4College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    References(28)

    [1] J Montanaro, R T Witek, K Anne et al. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE J Solid-State Circuits, 31, 1703(1996).

    [2] P Nuzzo, F de Bernardinis, P Terreni et al. Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuits Syst I, 55, 1441(2008).

    [3] L X Shen, N Sun, Y Shen et al. A two-step ADC with a continuous-time SAR-based first stage. IEEE J Solid-State Circuits, 54, 3375(2019).

    [4]

    [5]

    [6] B Razavi, B A Wooley. Design techniques for high-speed, high-resolution comparators. IEEE J Solid-State Circuits, 27, 1916(1992).

    [7] M H White, D R Lampe, F C Blaha et al. Characterization of surface channel CCD image arrays at low light levels. IEEE J Solid-State Circuits, 9, 1(1974).

    [8]

    [9] S Yoshihara, Y Nitta, M Kikuchi et al. A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS image sensor with seamless mode change. IEEE J Solid-State Circuits, 41, 2998(2006).

    [10] R Kapusta, H Y Zhu, C Lyden. Sampling circuits that break the kT/C thermal noise limit. IEEE J Solid-State Circuits, 49, 1694(2014).

    [11]

    [12] J A Fredenburg, M P Flynn. A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J Solid-State Circuits, 47, 2898(2012).

    [13]

    [14]

    [15]

    [16]

    [17] S L Li, B Qiao, M Gandara et al. A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure. IEEE J Solid-State Circuits, 53, 3484(2018).

    [18] L Jie, B Y Zheng, M P Flynn. A calibration-free time-interleaved fourth-order noise-shaping SAR ADC. IEEE J Solid-State Circuits, 54, 3386(2019).

    [19]

    [20]

    [21]

    [22] H Y Zhuang, W J Guo, J X Liu et al. A second-order noise-shaping SAR ADC with passive integrator and tri-level voting. IEEE J Solid-State Circuits, 54, 1636(2019).

    [23] J X Liu, S L Li, W J Guo et al. A 0.029-mm2 17-fJ/conversion-step third-order CT ΔΣ ADC with a single OTA and second-order noise-shaping SAR quantizer. IEEE J Solid-State Circuits, 54, 428(2019).

    [24]

    [25]

    [26]

    [27] J X Liu, C K Hsu, X Y Tang et al. Error-feedback mismatch error shaping for high-resolution data converters. IEEE Trans Circuits Syst I, 66, 1342(2019).

    [28] J Liu, G Wen, N Sun. Second-order DAC MES for SAR ADCs. Electron Lett, 53, 1570(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jiaxin Liu, Xiyuan Tang, Linxiao Shen, Shaolan Li, Zhelu Li, Wenjuan Guo, Nan Sun. Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. Journal of Semiconductors, 2020, 41(11): 111403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 7, 2020

    Accepted: --

    Published Online: Sep. 10, 2021

    The Author Email:

    DOI:10.1088/1674-4926/41/11/111403

    Topics