Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 4, 506(2024)

Dual-attention random selection global context fine-grained recognition network

Shengjun XU1,2, Yang JING1,2、*, Zhongxing DUAN1,2, Minghai LI1,2, Haitao LI3, and Fuyou LIU4
Author Affiliations
  • 1College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China
  • 2Xi'an Key Labratory of Building Manufactaring Intelligent & Automation Technology,Xi'an 710055,China
  • 3Traffic Engineering Construction Bureau of Jiangsu Province,Nanjing 210024,China
  • 4CCCC Tunnel Engineering Company Limited,Beijing 100024,China
  • show less
    Figures & Tables(15)
    Overall structure of the proposed network
    ConvNeXt network architecture
    Dual-attention random selection module
    Global context attention module
    Training process of three backbone
    Experimental effect of threshold on Stanford-cars dataset
    Visualizations of different networks on three datasets
    Visualizations of different networks on VMRURS dataset
    • Table 1. Dataset parameters table

      View table
      View in Article

      Table 1. Dataset parameters table

      数据集Stanford-carsCUB-200-2011FGVC-AircraftVMRURS
      训练样本量8 1445 9946 6673 096
      测试样本量8 0415 7943 333751
      类别数19620010048
    • Table 2. Variant structure of DRC-Net

      View table
      View in Article

      Table 2. Variant structure of DRC-Net

      网络变体模块相关描述
      Baseline基线网络ConvNeXt
      DRSM1Stage1后嵌入双注意力随机选择模块
      DRSM2Stage2后嵌入双注意力随机选择模块
      DRSM3Stage3后嵌入双注意力随机选择模块
      DRSM4Stage4后嵌入双注意力随机选择模块
      GCAM全局上下文注意力模块
    • Table 3. Comparison of ablation experiments with DRSM embedded in different locations

      View table
      View in Article

      Table 3. Comparison of ablation experiments with DRSM embedded in different locations

      MethodAccuracy/%
      Baseline93.8
      Baseline+DRSM194.2(+0.4)
      Baseline+DRSM294.6(+0.8)
      Baseline+DRSM394.6(+0.8)
      Baseline+DRSM494.3(+0.5)
      Baseline+DRSM2+DRSM394.9(+1.1)
    • Table 4. Different modules are added to the network

      View table
      View in Article

      Table 4. Different modules are added to the network

      MethodAccuracy/%Params/MFLOPs/G
      Baseline93.887.561.4
      Baseline+DRSM94.9(+1.1)87.5(+0)65.8(+4.4)
      Baseline+GCAM94.1(+0.3)88.7(+1.2)62.2(+0.8)
      Ours(Baseline+DRSM+GCAM)95.2(+1.4)88.7(+1.2)66.6(+5.2)
    • Table 5. Experiment results of the other methods based on ConvNeXt backbone network and ours

      View table
      View in Article

      Table 5. Experiment results of the other methods based on ConvNeXt backbone network and ours

      MethodAccuracy/%Params/MFLOPs/G
      ConvNeXt93.887.561.4
      FBSD94.697.582.3
      PMG95.197.582.2
      WS-DAN94.697.263.8
      AC-Net94.889.486.3
      SeA95.1108.293.2
      Ours95.288.766.6
    • Table 6. Experimental effects of different networks on three open fine-grained datasets

      View table
      View in Article

      Table 6. Experimental effects of different networks on three open fine-grained datasets

      NumberMethodBackboneAccurcy/%Params/MFLOPs/G
      CarBirdAir
      1RA-CNNVGG92.585.387.832.138.6
      2ResNet50ResNet5091.586.286.823.533.5
      3WS-DANInceptionv394.589.493.033.218.5
      4PMGResNet5095.189.693.445.137.4
      5Corss-XResNet5094.687.791.325.638.9
      6FBSDDensenet16194.589.893.246.853.1
      7API-NetResNet10194.988.693.046.163.0
      8AC-NetResnet5094.688.192.444.269.6
      9ViTViT-B_1693.590.293.186.162.0
      10TransFGViT-B_1694.891.793.486.462.0
      11FFVTViT-B_1694.691.693.286.262.0
      12ConvNeXtConvNeXt93.891.293.287.561.4
      13OursConvNeXt95.292.194.088.766.6
    • Table 7. Experimental effects of different networks on VMRURS dataset

      View table
      View in Article

      Table 7. Experimental effects of different networks on VMRURS dataset

      方法主干网络Accuracy/%Params/MFLOPs/G
      ResNet50ResNet5090.623.533.5
      PMGResNet5095.245.137.4
      FBSDDensenet16195.146.853.1
      WS-DANInceptionv395.833.218.5
      API-NetResNet10195.946.163.0
      AC-NetResNet5095.844.269.6
      ViTViT-B_1695.186.162.0
      TransFGViT-B_1696.386.462.0
      FFVTViT-B_1696.286.262.0
      ConvNeXtConvNeXt95.587.561.4
      OursConvNeXt97.088.766.6
    Tools

    Get Citation

    Copy Citation Text

    Shengjun XU, Yang JING, Zhongxing DUAN, Minghai LI, Haitao LI, Fuyou LIU. Dual-attention random selection global context fine-grained recognition network[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(4): 506

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 31, 2023

    Accepted: --

    Published Online: May. 28, 2024

    The Author Email: Yang JING (jingyang0525@xauat.edu.cn)

    DOI:10.37188/CJLCD.2023-0114

    Topics