Acta Photonica Sinica, Volume. 52, Issue 5, 0552201(2023)

High-performance Superconducting Transition-edge Single-photon Detectors(Invited)

Peizhan LI1,2, Jiaqiang ZHONG1, Wen ZHANG1、*, Zheng WANG1, Yue GEN1,2, Qijun YAO1, Wei MIAO1, Yuan REN1, Jing LI1, and Shengcai SHI1、**
Author Affiliations
  • 1Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
  • 2University of Science and Technology of China, Hefei 230026, China
  • show less
    References(27)

    [1] SANDERS G H. The Thirty Meter Telescope (TMT): an international observatory[J]. Journal of Astrophysics and Astronomy, 34, 81-86(2013).

    [2] SMITH G E. The invention and early history of the CCD[J]. Journal of Applied Physics, 109, 102421(2011).

    [3] LESSER M. A summary of charge-coupled devices for astronomy[J]. Publications of the Astronomical Society of the Pacific, 127, 1097(2015).

    [4] ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 54, 136-154(2011).

    [5] LI Jiaxi, DENG Jingsong, XU Chun et al. Development of the infrared space astronomical observatory[J]. Progress in Astronomy, 34, 327-340(2016).

    [6] IRWIN K D, HILTON G C[M]. Transition-edge sensors in cryogenic particle detection (topics in applied physics), 99, 63-150(2005).

    [7] CABRERA B, CLARKE R M, COLLING P et al. Detection of single infrared, optical and ultraviolet photons using superconducting transition edge sensors[J]. Applied Physics Letters, 73, 735-737(1998).

    [8] ROMANI R W, MILLER A J, CABRERA B et al. First astronomical application of a cryogenic transition edge sensor spectrophotometer[J]. The Astrophysical Journal, 521, L153-L156(1999).

    [9] ROMANI R W, MILLER A J, CABRERA B et al. Phase-resolved crab studies with a cryogenic transition-edge sensor spectrophotometer[J]. The Astrophysical Journal, 563, 221-228(2001).

    [10] BAY T J, BURNEY J A, BARRAL J et al. The optical imaging TES detector array: considerations for a cryogenic imaging instrument[J]. Nuclear Instruments and Method in Physics Research A, 559, 506-508(2006).

    [11] NAGLER P C, GREENHOUSE M A, MOSELY S H et al. Development of transition edge sensor detectors optimized for single-photon spectroscopy in the optical and near-infrared, high energy[C], 10709, 1070931(2019).

    [12] NAGLER P C, SADLEIR J E, WOLLACK E J. Transition-edge sensor detectors for the origin space telescope[J]. Journal of Astronomical Telescope, Instruments, and Systems, 7, 011005(2021).

    [13] LITA A E, MILLER A J, NAM S W. Counting near-infrared single-photons with 95% efficiency[J]. Optics Express, 16, 3032-3040(2008).

    [14] FUKUDA D, FUJII G, NUMATA T et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling[J]. Optics Express, 19, 870-875(2011).

    [15] ZHANG Qingya, WANG Tianshun, LIU Jianshe et al. Optical response of Al/Ti bilayer transition edge sensors[J]. Chinese Physics B, 23, 118502(2014).

    [16] XU Xiaolong, RAJTERI M, LI Jinjin et al. Investigation of the superconducting Ti/PdAu bilayer films for transition edge sensors[J]. IEEE Transactions on Applied Superconductivity, 32, 2100404(2022).

    [17] ZHANG Wen, MIAO Wei, WANG Zheng et al. Twin-slot antenna coupled Ti transition-edge sensor at 350 GHz[J]. Journal of Low Temperature Physics, 193, 276-281(2018).

    [18] ZHANG Wen, GENG Yue, WANG Zheng et al. Development of titanium-based transition-edge single-photon detector[J]. IEEE Transactions on Applied Superconductivity, 29, 2100505(2019).

    [19] GENG Yue, LI Peizhan, ZHONG Jiaqiang et al. Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model[J]. Chinese Physics B, 30, 098501(2021).

    [20] GENG Yue, ZHONG Jiaqiang, LI Peizhanet. Characteristics of Ti transition-edge sensor based superconducting single-photon detectors[J]. Journal of Infrared and Millimeter Waves, 41, 678-684(2022).

    [21] WANG Zheng, ZHANG Wen, MIAO Wei et al. Electron-beam evaporated superconducting titanium films for antenna-coupled transition edge sensors[J]. IEEE Transactions on Applied Superconductivity, 28, 2100204(2018).

    [22] IVRY Y, KIM C S, DANE A E et al. Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition[J]. Physical Review B, 90, 214515(2014).

    [23] ZHANG Wen, WANG Zheng, ZHONG Jiaqiang et al. Evidence for controllable reduction of critical temperature in titanium TESs by baking in air[J]. IEEE Transactions on Applied Superconductivity, 31, 2101205(2021).

    [24] ZHONG Jiaqiang, ZHANG Wen, MIAO Wei et al. Fast-response superconducting titanium bolometric detectors[J]. IEEE Transactions on Applied Superconductivity, 29, 2100205(2019).

    [25] DAMAYATHI R M T, FUKUDA D, TAKAHASHI H et al. Design of an optical absorption cavity for Titanium transition edge sensors[J]. Journal of Low Temperature Physics, 151, 46(2008).

    [26] LI Peizhan, ZHANG Wen, GENG Yue et al. Improvement of Ti-based superconducting transition edge sensors with dielectric mirror[C], 1-2(2019).

    [27] GENG Yue, ZHANG Wen, LI Peizhan et al. Improving energy detection efficiency of Ti based superconducting transition-edge sensors with optical cavity[J]. Journal of Low Temperature Physics, 199, 556-562(2020).

    Tools

    Get Citation

    Copy Citation Text

    Peizhan LI, Jiaqiang ZHONG, Wen ZHANG, Zheng WANG, Yue GEN, Qijun YAO, Wei MIAO, Yuan REN, Jing LI, Shengcai SHI. High-performance Superconducting Transition-edge Single-photon Detectors(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 0552201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Advanced Science and Technology of Astronomical Optics

    Received: Oct. 10, 2022

    Accepted: Nov. 21, 2022

    Published Online: Jul. 19, 2023

    The Author Email: Wen ZHANG (wzhang@pmo.ac.cn), Shengcai SHI (scshi@pmo.ac.cn)

    DOI:10.3788/gzxb20235205.0552201

    Topics