Opto-Electronic Engineering, Volume. 47, Issue 10, 200265(2020)
Macro/sub-pulse coded photon counting LiDAR
[1] [1] Albota M A, Aull B F, Fouche D G, et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays[J]. Lincoln Laboratory Journal, 2002, 13(2): 351–370.
[2] [2] Warburton R E, McCarthy A, Wallace A M, et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength[J]. Optics Letters, 2007, 32(15): 2266–2268.
[3] [3] O’Brien M E, Fouche D G. Simulation of 3d laser radar sys-tems[J]. Lincoln Laboratory Journal, 2005, 15(1): 37–60.
[4] [4] Stone W C, Juberts M, Dagalakis N G, et al. Performance anal-ysis of Next-Generation ladar for manufacturing, Construction, and Mobility[R]. NIST, 2007: 7112–7117.
[7] [7] Vacek M, Michalek V, Peca M, et al. Photon counting Lidar for deep space applications: concept and simulator[J]. Proceeding of SPIE, 2013, 8773: 877309.
[8] [8] Markus T, Neumann T, Martino A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260–273.
[9] [9] Liu B, Yu Y, Chen Z, et al. True random coded photon counting Lidar[J]. Opto-Electronic Advances, 2020, 3(2): 190044.
[10] [10] Mccarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 2009, 48(32): 6241–6251.
[11] [11] Du BC,Pang CK,Wu D, et al. High-speed photon-counting laser ranging for broad range of distances[J]. Scientific Reports, 2018, 8(1): 4198.
[12] [12] LiangM,HuangJH,RenM, et al. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reduc-ing the range ambiguity[J]. Optics Express, 2014, 22(4): 4662–4670.
[13] [13] Zhang Q, Soon H W, Tian H T, et al. Pseudo-random single photon counting for time-resolved optical measurement[J]. Op-tics Express, 2008, 16(17): 13233–13239.
[14] [14] Zhang Q, Chen L, Chen N G, et al. Pseudo-random single pho-ton counting: a high-speed implementation[J]. Biomedical Optics Express, 2010, 1(1): 41–46.
[15] [15] Takeuchi N, Sugimoto N, Baba H, et al. Random modulation CW Lidar[J]. Applied Optics, 1983, 22(9): 1382–1386.
[16] [16] Hiskett P A, Parry C S, Mccarthy A, et al. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates[J]. Optics Express, 2008, 16(18): 13685–13698.
[17] [17] Krichel N J, Mccarthy A, Buller G S. Resolving range ambiguity in a photon counting depth imager operating at kilometer dis-tances[J]. Optics Express, 2010, 18(9): 9192–9206.
[18] [18] Rieger P, UllrichA. Anovel range ambiguity resolutiontechnique applying pulse-position modulation in time-of-flight ranging ap-plications[J]. Proceedings of SPIE, 2012, 8389: 83790R.
[19] [19] Zhang Y F, He Y, Yang F, et al. Three-dimensional imaging Lidar system based on high speed pseudorandom modulation and photon counting[J]. Chinese Optics Letters, 2016, 14(11): 111101.
[20] [20] Yang F, Zhang F, He F, et al. High speed pseudorandom mod-ulation fiber laser ranging system[J]. Chinese Optics Letters, 2014, 12(8): 082801.
[21] [21] Oh M S, Kong H J, Kim T M, et al. Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode[J]. Optics Communications, 2010, 283(2): 304–308.
[22] [22] Gatt P, Johnson S, Nichols T, et al. Geiger-mode avalanche photodiode ladar receiver performance characteristics and de-tection statistics[J]. Applied Optics, 2009, 48(17): 3261–3276.
Get Citation
Copy Citation Text
Liu Bo, Jiang Shuo, Yu Yang4, Chen Zhen. Macro/sub-pulse coded photon counting LiDAR[J]. Opto-Electronic Engineering, 2020, 47(10): 200265
Category: Article
Received: Jul. 16, 2020
Accepted: --
Published Online: Jan. 12, 2021
The Author Email: Bo Liu (boliu@ioe.ac.cn)