Opto-Electronic Engineering, Volume. 52, Issue 4, 250058(2025)

Adaptive mesh partitioning for graph attention Transformer networks

Ting Han, Jia Ye*, Lianshan Yan, and Zongxin Gan
Author Affiliations
  • School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
  • show less
    Figures & Tables(11)
    Process of adaptive mesh refinement under node classification problem
    GTF-Net structure diagram
    The training and validation loss of GTF-Net
    Bessel's equations. (a) Original mesh; (b) Solution field (original mesh); (c) Gradient error distribution (original mesh); (d) GTF-Net mesh; (e) Solution field (GTF-Net mesh); (f) Error gradient distribution (GTF-Net mesh); (g) skFem mesh; (h) Solution field (skFem mesh); (i) Gradient error distribution (skFem mesh)
    Solving optical waveguide. (a) Original mesh; (b) Solution field (original mesh); (c) Gradient error distribution (original mesh); (d) GTF-Net mesh; (e) Solution field (GTF-Net mesh); (f) Error gradient distribution (GTF-Net mesh); (g) skFem mesh; (h) Solution field (skFem mesh); (i) Gradient error distribution (skFem mesh)
    Quality distribution of different mesh cells. (a) SICN value distribution of original mesh cells; (b) SICN value distribution of GTF-Net mesh cells; (c) SICN value distribution of skFem mesh cells; (d) Gamma value distribution of original mesh cells; (e) Gamma value distribution of GTF-Net mesh cells; (f) Gamma value distribution of skFem mesh cells; (g) SIGE value distribution of original mesh cells; (h) SIGE value distribution of GTF-Net mesh cells; (i) SIGE value distribution of skFem mesh cells
    • Table 1. Part of random function in training data generation method

      View table
      View in Article

      Table 1. Part of random function in training data generation method

      Function nameDescription
      plane_wave( )Generate two-dimensional plane wave, using cosine function to represent the propagation of electromagnetic waves.
      cylindrical_wave( )Generate cylindrical wave, where the wave intensity is related to the radial distance from the source point, described using Bessel function.
      random_waveguide_field()Generate random waveguide field, providing random refractive index and waveguide parameter.
      gaussian_beam( )Generate Gaussian beam, calculate the radial distance, and adjust the beam width based on propagation distance.
      random_interface_field( )Generate random interface field, selecting random interface types and Gaussian beams as base field.
      step_interface( )Define step interface, determining the change in dielectric constant of material at boundary position.
      periodic_interface( )Define periodic interface, producing periodic material structure.
      multipole_field( )Define multipole field, using Bessel function and angle to describe multipoles of different orders.
      evanescent_wave( )Define evanescent wave, primarily decaying in the y-direction.
    • Table 2. Parameter setting for different neural network frameworks

      View table
      View in Article

      Table 2. Parameter setting for different neural network frameworks

      ParameterGTF-NetTF-NetGATv2-Net
      Feature encoderDenseDenseDense
      Transformer layer4-layer TransformerConv8-layer TransformerConvNone
      GATv2 layer4-layer GATv2ConvNone8-layer GATv2Conv
      Skip connections4 dense skip connections4 dense skip connections4 dense skip connections
      Layer normalization8-layer LayerNorm8-layer LayerNorm8-layer LayerNorm
      Feature aggregationDense -> ReLU -> DropoutDense -> ReLU -> DropoutDense -> ReLU -> Dropout
      ClassifierDenseDenseDense
      Activation functionReLU, SigmoidReLU, SigmoidReLU, Sigmoid
      Dropout0.10.10.1
    • Table 3. Performance comparison of GTF-Net with other methods

      View table
      View in Article

      Table 3. Performance comparison of GTF-Net with other methods

      NetworkMSE/%Accuracy/%F1-Score/%
      GTF-Net1.5297.996.4
      TF-Net1.8697.595.7
      GATv2-Net3.1295.994.2
    • Table 4. Error comparison between GTF-Net Grid and other methods

      View table
      View in Article

      Table 4. Error comparison between GTF-Net Grid and other methods

      MeshBessel equationsOriginal mesh
      Number of nodesNumber of elementsStandard deviationTime/sRatio/%Number of nodesNumber of elementsStandard deviationTime/sRatio/%
      Original mesh981620.016981620.031
      skFem347468422.384×10−45.4687317283.379×10−56.43
      GTF-Net348968253.353×10−53.5135.7487417142.573×10−52.5859.91
    • Table 5. Element quality analysis of different meshes

      View table
      View in Article

      Table 5. Element quality analysis of different meshes

      Quality parameterOriginal meshGTF-Net meshskFem mesh
      SICN0.9736 (0.8311->1)0.9644 (0.362->1)0.866 (0.866->0.866)
      Gamma0.9685 (0.7812->1)0.9622 (0.3179->1)0.8284 (0.8284->0.8284)
      SIGE0.9884 (0.9068->1)0.9874 (0.6281->1)0.9292 (0.9292->0.9292)
    Tools

    Get Citation

    Copy Citation Text

    Ting Han, Jia Ye, Lianshan Yan, Zongxin Gan. Adaptive mesh partitioning for graph attention Transformer networks[J]. Opto-Electronic Engineering, 2025, 52(4): 250058

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Feb. 27, 2025

    Accepted: Apr. 10, 2025

    Published Online: Jun. 11, 2025

    The Author Email: Jia Ye (叶佳)

    DOI:10.12086/oee.2025.250058

    Topics