Opto-Electronic Engineering, Volume. 52, Issue 4, 250058(2025)
Adaptive mesh partitioning for graph attention Transformer networks
Fig. 1. Process of adaptive mesh refinement under node classification problem
Fig. 4. Bessel's equations. (a) Original mesh; (b) Solution field (original mesh); (c) Gradient error distribution (original mesh); (d) GTF-Net mesh; (e) Solution field (GTF-Net mesh); (f) Error gradient distribution (GTF-Net mesh); (g) skFem mesh; (h) Solution field (skFem mesh); (i) Gradient error distribution (skFem mesh)
Fig. 5. Solving optical waveguide. (a) Original mesh; (b) Solution field (original mesh); (c) Gradient error distribution (original mesh); (d) GTF-Net mesh; (e) Solution field (GTF-Net mesh); (f) Error gradient distribution (GTF-Net mesh); (g) skFem mesh; (h) Solution field (skFem mesh); (i) Gradient error distribution (skFem mesh)
Fig. 6. Quality distribution of different mesh cells. (a) SICN value distribution of original mesh cells; (b) SICN value distribution of GTF-Net mesh cells; (c) SICN value distribution of skFem mesh cells; (d) Gamma value distribution of original mesh cells; (e) Gamma value distribution of GTF-Net mesh cells; (f) Gamma value distribution of skFem mesh cells; (g) SIGE value distribution of original mesh cells; (h) SIGE value distribution of GTF-Net mesh cells; (i) SIGE value distribution of skFem mesh cells
|
|
|
|
|
Get Citation
Copy Citation Text
Ting Han, Jia Ye, Lianshan Yan, Zongxin Gan. Adaptive mesh partitioning for graph attention Transformer networks[J]. Opto-Electronic Engineering, 2025, 52(4): 250058
Category: Article
Received: Feb. 27, 2025
Accepted: Apr. 10, 2025
Published Online: Jun. 11, 2025
The Author Email: Jia Ye (叶佳)