Laser & Optoelectronics Progress, Volume. 62, Issue 7, 0706002(2025)

Fast Classification Method for Unbalanced Few-Sample Events for Φ-OTDR Intrusion Detection System

Zhanping Zhang*, Haoyin Lü, Fangping Yang, Chen Zhang, and Jin Yan
Author Affiliations
  • School of Mathematics and Information Engineering, Longdong University, Qingyang 745000, Gansu , China
  • show less
    Figures & Tables(25)
    Spatial correlation of event phase changes. (a) Intrusion event phase diagram; (b) intrusion event phase sequence diagram
    Spatial correlation of event signals
    SCDE algorithm process
    SCNFE algorithm process
    Improved scale-reconstructed GAF field 2D image generation method
    MobileNetV3-DAS network architecture
    Deeply separable convolutional mode. (a) Depthwise separable convolution based on SE; (b) depthwise separable convolution based on ECA improvement
    ECA attention mechanism
    Schematic of experimental scene
    Equipment and fiber optic cable deployment. (a) Distributed optical fiber sensing equipment; (b) optical cable fence bundling deployment; (c) optical cable tube deployment; (d) exposed fixed deployment of optical cable
    Phase diagram of intrusion events. (a) Raw phase diagram from das device; (b) phase change after cropping; (c) data matrix of phase change; (d) visualization of the phase change matrix
    Experimental results enhanced by SCE method. (a) KO; (b) KF; (c) OF; (d) SF; (e) PA; (f) VA
    Experimental results of spatial correlation denoising enhancement method. (a) KO; (b) KF; (c) OF; (d) SF; (e) PA; (f) VA
    Cosine similarity of results obtained by different data enhancement methods. (a) SCE; (b) SCDE
    Experimental results of spatial correlation noise fusion enhancement method. (a) KO; (b) KF; (c) OF; (d) SF; (e) PA; (f) VA
    Sample size for different data enhancement methods
    Accuracy of different data enhancement methods
    Confusion matrixs of MobileNetV3-DAS experimental results. (a) SCNFE; (b) SCDE; (c) SCE
    Classification accuracy of different classification models
    • Table 1. Depth separable convolution parameter configuration

      View table

      Table 1. Depth separable convolution parameter configuration

      InputOperatorExp sizeOutECANLS
      1122×16BNeck 3×31616RE2
      562×16BNeck 3×37224RE2
      282×24BNeck 3×38824RE1
      282×24BNeck 5×59640HS2
      142×40BNeck 5×524040HS1
      142×40BNeck 5×324040HS1
      142×40BNeck 5×512048HS1
      142×48BNeck 5×514448HS1
      142×48BNeck 5×528896HS2
      72×96BNeck 5×557696HS1
      72×96BNeck 5×557696HS1
    • Table 2. Description of experimental data

      View table

      Table 2. Description of experimental data

      Serial numberEvent nameAbbreviations of eventsTime scale /sNumber of original samplesDescriptive
      1Knocking on fiber optic cablesKO1‒523Fiber optics on the fence were struck continuously with wooden sticks
      2Knocking on the fenceKF1‒529Continuous tapping on the fence with a wooden stick
      3Over the fence.OF5‒1521Over the fence into the interior of the critical area
      4Shaking fiber optic cablesSF2‒55Shake fiber optics fixed to the fence by hand
      5Pedestrian accessPA2‒523Pedestrians traveling through key area entrances and exits
      6Vehicle accessVA2‒77Vehicle movement through key area entrances and exits
      7Environmental noiseENNoise data for different time periods and different fence locations
    • Table 3. Sample size of different data enhancement methods

      View table

      Table 3. Sample size of different data enhancement methods

      Event labelEvent nameOriginal sampleSCESCDESCNFENoise sample
      1KO232301847364
      2KF292902326963
      3OF212101686724
      4SF6604872015
      5PA10100766849
      6VA7845571513
    • Table 4. Classification results of intrusion signals using different data enhancement methods

      View table

      Table 4. Classification results of intrusion signals using different data enhancement methods

      Data augmentationEvent labelPrecisionRecallSpecificityF1
      SCE10.861.000.990.92
      20.900.860.970.88
      31.000.831.000.91
      40.810.860.910.83
      51.000.801.000.89
      60.670.700.890.68
      SCDE10.831.000.990.91
      20.941.000.980.97
      30.950.870.980.91
      41.001.001.001.00
      50.830.830.950.83
      61.001.001.001.00
      SCNFE11.001.001.001.00
      20.971.000.990.98
      30.980.981.000.99
      41.000.981.000.99
      51.000.920.980.92
      60.980.970.990.97
    • Table 5. Experimental results of different classification methods

      View table

      Table 5. Experimental results of different classification methods

      ModelData augmentationPrecisionRecallSpecificityF1Model size /MBTime /ms
      AlexNetSCE0.850.850.960.8455.6017.79
      SCDE0.870.830.960.8320.00
      SCNFE0.880.830.960.8317.90
      VGG16SCE0.920.920.980.92512.00155.79
      SCDE0.920.920.980.92141.63
      SCNFE0.960.950.990.95154.32
      ResNet34SCE0.840.870.970.8581.3081.61
      SCDE0.940.890.980.9198.80
      SCNFE0.980.981.000.9888.59
      MobileNetV2SCE0.850.830.960.848.7445.36
      SCDE0.880.900.970.8843.55
      SCNFE0.970.970.990.9741.90
      MobileNetV3SCE0.880.820.960.835.9418.87
      SCDE0.880.850.960.8518.96
      SCNFE0.960.960.990.9618.52
      MobileNetV3-DASSCE0.870.840.960.854.1718.43
      SCDE0.930.950.980.9417.43
      SCNFE0.970.970.990.9716.62
    • Table 6. Experimental results of improved MobileNetV3 with different attention mechanisms

      View table

      Table 6. Experimental results of improved MobileNetV3 with different attention mechanisms

      AttentionMethodAccuracyPrecisionRecallSpecificityF1Model size /MBTime /ms
      SESCE0.810.880.820.960.835.9418.87
      SCDE0.840.880.850.960.8518.96
      SCNFE0.960.960.960.990.9618.52
      CBAMSCE0.810.860.830.960.844.7226.10
      SCDE0.850.820.860.970.8323.06
      SCNFE0.890.890.890.980.8922.07
      CASCE0.790.850.820.950.834.8421.12
      SCDE0.890.930.930.870.9321.83
      SCNFE0.970.980.981.000.9925.87
      ECASCE0.820.870.840.960.854.1718.43
      SCDE0.920.930.950.980.9417.43
      SCNFE0.970.970.970.990.9716.62
    Tools

    Get Citation

    Copy Citation Text

    Zhanping Zhang, Haoyin Lü, Fangping Yang, Chen Zhang, Jin Yan. Fast Classification Method for Unbalanced Few-Sample Events for Φ-OTDR Intrusion Detection System[J]. Laser & Optoelectronics Progress, 2025, 62(7): 0706002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Oct. 22, 2024

    Accepted: Dec. 2, 2024

    Published Online: Apr. 8, 2025

    The Author Email: Zhanping Zhang (622023340015@smail.nju.edu.cn)

    DOI:10.3788/LOP242137

    CSTR:32186.14.LOP242137

    Topics