Laser & Optoelectronics Progress, Volume. 55, Issue 3, 031007(2018)
Super-Resolution Restoration of Low Quality Face Images
Fig. 2. Algorithm framework (a) fuzziness and down sampling; (b) face decomposition based on PCA; (c) MAP reasoning to get the best feature face; (d) constraint enhancement
Fig. 4. Image processing results by different algorithms (×4). (a) Input images; (b) Bicubic method; (c) EigTran method; (d) ScSR method; (e) SRCNN method; (f) proposed algorithm; (g) original images
Fig. 5. Contrast experiment at n=819. (a) Input images; (b) Bicubic method; (c) proposed algorithm; (d) original image
Fig. 6. Effects of the number of training samples n on super-resolution restoration image PSNR
Fig. 7. Effects of the number of training samples n on super-resolution restoration image MSSIM
Fig. 8. Low-resolution face image processing without glasses. (a) Original high-resolution images; (b) low-resolution input images; (c) train set-1; (d) train set-2
Fig. 9. Low-resolution face image processing with glasses. (a) Original high-resolution images; (b) low-resolution input images; (c) train set-1; (d) train set-2
|
Get Citation
Copy Citation Text
Jialin Tang, Zebin Chen, Binghua Su, Keqin Li. Super-Resolution Restoration of Low Quality Face Images[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031007
Category: Image processing
Received: Aug. 22, 2017
Accepted: --
Published Online: Sep. 10, 2018
The Author Email: Zebin Chen ( zebinchen23@163.com)