Journal of Synthetic Crystals, Volume. 49, Issue 12, 2365(2020)

Preparation and Thermal Properties of Stearic Acid/Intercalated Kaolinite Composite Phase Change Material

ZHANG Meng1, ZHAO Bingxin1, WANG Juan1, and CHENG Hongfei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] Lorwanishpaisarn N, Kasemsiri P, Posi P, et al. Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3):1293-1303.

    [2] [2] Kenisarin M, Mahkamov K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965.

    [3] [3] Li G, Qian S X, Lee H, et al. Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application[J]. Energy, 2014, 65: 675-691.

    [4] [4] Xu B W, Li Z J. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Applied Energy, 2013, 105: 229-237.

    [5] [5] Konuklu Y, Ersoy O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage[J]. Applied Thermal Engineering, 2016, 107: 575-582.

    [6] [6] Sar A, Karaipekli A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage[J]. Materials Chemistry and Physics, 2008, 109(2/3): 459-464.

    [7] [7] Murray H H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Applied Clay Science, 2000, 17(5/6): 207-221.

    [8] [8] Cheng H F, Liu Q F, Yang J, et al. The thermal behavior of kaolinite intercalation complexes-a review[J]. Thermochimica Acta, 2012, 545: 1-13.

    [9] [9] Cheng H F, Zhou Y, Liu Q F. Kaolinite nanomaterials: preparation, properties and functional applications[J]. Nanomaterials from Clay Minerals, 2019: 285-334.

    [10] [10] Sar A. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings[J]. Energy and Buildings, 2015, 96: 193-200.

    [11] [11] Lv P, Liu C Z, Rao Z H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials[J]. Applied Energy, 2016, 182: 475-487.

    [12] [12] Li C C, Fu L J, Ouyang J, et al. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage[J]. Applied Clay Science, 2015, 115: 212-220.

    [13] [13] Song S K, Dong L J, Zhang Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage[J]. Energy, 2014, 76: 385-389.

    [14] [14] Liu S Y, Yang H M. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material[J]. Energy Technology, 2015, 3(1): 77-83.

    [15] [15] Liu S Y, Yang H M. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage[J]. Applied Clay Science, 2014, 101: 277-281.

    [16] [16] Kuroda Y, Ito K, Itabashi K, et al. One-step exfoliation of kaolinites and their transformation into nanoscrolls[J]. Langmuir, 2011, 27(5): 2028-2035.

    [17] [17] Mako E, Kovacs A, Katona R, et al. Characterization of kaolinite-cetyltrimethylammonium chloride intercalation complex synthesized through eco-friend kaolinite-urea pre-intercalation complex[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508: 265-273.

    [19] [19] Li J W, Zuo X C, Zhao X G, et al. Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage[J]. Applied Clay Science, 2019, 183: 105358.

    [21] [21] Matusik J, Gawe A, Bielańska E b, et al. The effect of structural order on nanotubes derived from kaolin-group minerals[J]. Clays & Clay Minerals, 2009, 57(4): 452-464.

    [22] [22] Matusik J, Wisla-Walsh E, Gawel A, et al. Surface area and porosity of nanotubes obtained from kaolin minerals of different structural order[J]. Clays and Clay Minerals, 2011, 59(2): 116-135.

    [23] [23] Liu Q F, Li X G, Cheng H F. Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls[J]. Applied Clay Science, 2016, 124-125: 175-182.

    [24] [24] Li C, Fu L, Ouyang J, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Sci Rep, 2013, 3: 1908.

    [25] [25] Karaman S, Karaipekli A, Sar A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1647-1653.

    [26] [26] Ali Memon S, Yiu Lo T, Shi X, et al. Preparation, characterization and thermal properties of Lauryl alcohol/kaolin as novel form-stable composite phase change material for thermal energy storage in buildings[J]. Applied Thermal Engineering, 2013, 59(1): 336-347.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Meng, ZHAO Bingxin, WANG Juan, CHENG Hongfei. Preparation and Thermal Properties of Stearic Acid/Intercalated Kaolinite Composite Phase Change Material[J]. Journal of Synthetic Crystals, 2020, 49(12): 2365

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics