Journal of Synthetic Crystals, Volume. 53, Issue 6, 991(2024)
Dielectric Properties of Ionic Crystals Based on the Skanavi Model
[1] [1] ZHANG L Y, YAO X. Dielectric physics[M]. Xi’an: Xi’an Jiaotong University Press, 1991: 116 (in Chinese).
[2] [2] VAN RYSSELBERGHE P. Remarks concerning the Clausius-Mossotti law[J]. The Journal of Physical Chemistry, 1932, 36(4): 1152-1155.
[3] [3] NEUGEBAUER H E J. Clausius-mosotti equation for certain types of anisotropic crystals[J]. Canadian Journal of Physics, 1954, 32(1): 1-8.
[4] [4] ROBINSON D A. Calculation of the dielectric properties of temperate and tropical soil minerals from ion polarizabilities using the clausius-mosotti equation[J]. Soil Science Society of America Journal, 2004, 68(5): 1780-1785.
[5] [5] HANNAY J H. The Clausius-Mossotti equation: an alternative derivation[J]. European Journal of Physics, 1983, 4(3): 141-143.
[6] [6] XIA J H, YAO X, DING S H, et al. Calculating dielectric constants of NaCl[J]. Physics and Engineering, 2002, 12(5): 42-49 (in Chinese).
[7] [7] FANG J X, YIN Z W. Dielectric physics[M]. Beijing: Science Press, 1989: 42 (in Chinese).
[8] [8] SILVA G M, LIANG X D, KONTOGEORGIS G M. How to account for the concentration dependency of relative permittivity in the Debye-Hückel and Born equations[J]. Fluid Phase Equilibria, 2023, 566: 113671.
[9] [9] SKANAVI G I. Dielectric permittivity and its relation to temperature in crystals of the rutile and perovskite type[J]. Doklady Akademii Nauk sssr, 1948, 9: 76-81.
[10] [10] SKANAVI G I. The problem of calculating the internal field in polycrystalline dipole dielectrics in the case of relaxation polarization[J]. Soviet physics, 1948, 4: 28-32.
[11] [11] SKANAVI G I, KSENDZOV I M, TRIGUBENKO V A, et al. Relaxation polarization and losses in nonferroelectric dielectrics with high dielectric constants[J]. Soviet Journal of Experimental and Theoretical Physics, 1958, 6: 250.
[12] [12] SHANNON R D, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925-946.
[13] [13] PAULING L, WHELAND G W. The nature of the chemical bond. V[J]. The Journal of Chemical Physics, 1934, 2(8): 482.
[14] [14] PAULING L. Atomic radii and interatomic distances in metals[J]. Journal of the American Chemical Society, 1947, 69(3): 542-553.
[15] [15] PAULING L. The sizes of ions and the structure of ionic crystals[J]. Journal of the American Chemical Society, 1927, 49(3): 765-790.
[16] [16] SLATER J C. Atomic radii in crystals[J]. The Journal of Chemical Physics, 1964, 41(10): 3199-3204.
[17] [17] SINGH B P, SRIVASTAVA S K, DINESH K. Relation between thermal expansivity and bulk modulus for ionic solids at high temperatures[J]. Physica B: Condensed Matter, 2004, 349(1/2/3/4): 401-407.
[18] [18] BOSWELL F C. Precise determination of lattice constants by electron diffraction and variations in the lattice constants of very small crystallites[J]. Proceedings of the Physical Society Section A, 1951, 64(5): 465-476.
[19] [19] KAMIYOSHI K, FUJIMURA T. Method of measuring the dielectric constant of solid having arbitrary forms and its application to sodium chloride[J]. Science Reports of the Research Institutes, Tohoku University Ser A, Physics, Chemistry and Metallurgy, 1965, 17: 219-231.
[20] [20] JIN W F. Dielectric physics[M]. 2nd edition. Beijing: Machinery Industry Press, 1997 (in Chinese).
[21] [21] LI B, MICHAELIDES A, SCHEFFLER M. Density functional theory study of flat and stepped NaCl(001)[J]. Physical Review B, 2007, 76(7): 075401.
Get Citation
Copy Citation Text
LUO Hao, CHENG Pengfei, DANG Ziyan, GENG Kejia, KONG Cuncun, QIN Xinrui, SU Yaoheng. Dielectric Properties of Ionic Crystals Based on the Skanavi Model[J]. Journal of Synthetic Crystals, 2024, 53(6): 991
Category:
Received: Jan. 18, 2024
Accepted: --
Published Online: Aug. 22, 2024
The Author Email: CHENG Pengfei (pfcheng@xpu.edu.cn)
CSTR:32186.14.