Photonics Research, Volume. 10, Issue 8, 1931(2022)
Mid-infrared broadband optical frequency comb generated in MgF2 resonators
[1] S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, M. Qi. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun., 8, 372(2017).
[2] S. Wan, R. Niu, Z.-Y. Wang, J.-L. Peng, M. Li, J. Li, G.-C. Guo, C.-L. Zou, C.-H. Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon. Res., 8, 1342-1349(2020).
[3] H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi, Y.-F. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 11, 2336(2020).
[4] F.-X. Wang, W. Wang, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang, W. Zhao, Z.-F. Han, G.-C. Guo, W. Chen. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 14, 1900190(2020).
[5] A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C.-L. Zou, H. X. Tang. Pockels soliton microcomb. Nat. Photonics, 15, 21-27(2021).
[6] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).
[7] M. Seidel, X. Xiao, A. H. Syed, G. Arisholm, A. Hartung, T. Z. Kevin, G. S. Peter, F. Habel, M. Trubetskov, V. Pervak, O. Pronin, F. Krausz. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv., 4, eaaq1526(2018).
[8] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).
[9] H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. Hu. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2018).
[10] M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, A. L. Gaeta. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).
[11] G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, N. R. Newbury. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics, 12, 202-208(2018).
[12] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picqué. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 6310(2015).
[13] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).
[14] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).
[15] C. Xiang, J. Liu, J. Guo, L. Chang, N. W. Rui, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, J. K. Tobias, E. B. John. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).
[16] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Brès, T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).
[17] M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, A. L. Gaeta. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).
[18] A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, L. Maleki. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett., 40, 3468-3471(2015).
[19] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).
[20] I. S. Grudinin, K. Mansour, N. Yu. Properties of fluoride microresonators for mid-IR applications. Opt. Lett., 41, 2378-2381(2016).
[21] M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken. Quantum cascade lasers: from tool to product. Opt. Express, 23, 8462-8475(2015).
[22] L. Tombez, S. Schilt, D. Hofstetter, T. Südmeyer. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference. Opt. Lett., 38, 5079-5082(2013).
[23] M. Wang, Y. Yang, L. Meng, X. Jin, Y. Dong, L. Zhang, W. Xu, K. Wang. Fabrication and packaging for high-
[24] B. Bendow, H. G. Lipson, S. S. Mitra. Multiphonon infrared absorption in highly transparent MgF2. Phys. Rev. B, 20, 1747-1749(1979).
[25] D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, A. Fuerbach. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163-1166(2017).
[26] G. Li, X. Peng, S. Dai, Y. Wang, M. Xie, L. Yang, C. Yang, W. Wei, P. Zhang. Highly coherent 1.5–8.3 μm broadband supercontinuum generation in tapered As–S chalcogenide fibers. J. Lightwave Technol., 37, 1847-1852(2019).
[27] Y. Xie, D. Cai, H. Wu, J. Pan, N. Zhou, C. Xin, S. Yu, P. Wang, X. Jiang, J. Qiu, X. Guo, L. Tong. Mid-infrared chalcogenide microfiber knot resonators. Photon. Res., 8, 616-621(2020).
[28] J. K. Tobias, L. G. Alexander, M. Lipson, L. G. Michael. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[29] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).
[30] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).
[31] D. K. Agustika, I. Mercuriani, C. W. Purnomo, S. Hartono, K. Triyana, D. D. Iliescu, M. S. Leeson. Fourier transform infrared spectrum pre-processing technique selection for detecting PYLCV-infected chilli plants. Spectrochim. Acta A, 278, 121339(2022).
[32] G. Lin, Y. K. Chembo. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express, 23, 1594-1604(2015).
[33] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).
[34] B. Zhang, P. Zeng, Z. Yang, D. Xia, J. Zhao, Y. Sun, Y. Huang, J. Song, J. Pan, H. Cheng, D. Choi, Z. Li. On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photon. Res., 9, 1272-1279(2021).
[35] N. L. B. Sayson, T. Bi, V. Ng, H. Pham, L. S. Trainor, H. G. L. Schwefel, S. Coen, M. Erkintalo, S. G. Murdoch. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics, 13, 701-706(2019).
[36] C. Lecaplain, C. Javarzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg. Quantum cascade laser Kerr frequency comb. European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference, CB_10_16(2015).
[37] C. Lecaplain, C. Javarzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg. Quantum cascade laser Kerr frequency comb generation. Conference on Lasers and Electro-Optics (CLEO), SW4F.2(2015).
[38] C. Lecaplain, C. Javarzac-Galy, E. Lucas, J. D. Jost, T. J. Kippenberg. Quantum cascade laser Kerr frequency comb. Frontiers in Optics, FTu3E.2(2015).
Get Citation
Copy Citation Text
Wei Wu, Qibing Sun, Yi Wang, Yu Yang, Xianshun Ming, Lei Shi, Keyi Wang, Wei Zhao, Leiran Wang, "Mid-infrared broadband optical frequency comb generated in MgF2 resonators," Photonics Res. 10, 1931 (2022)
Category: Nonlinear Optics
Received: Mar. 25, 2022
Accepted: Jun. 21, 2022
Published Online: Jul. 27, 2022
The Author Email: Qibing Sun (qbsun@opt.ac.cn)