Journal of Optoelectronics · Laser, Volume. 35, Issue 8, 885(2024)

Research progress of Erbium-doped gain medium for laser operation in 2.7—3 μm

LI Hongyuan1,2, ZHANG Huili1,3,4, LUO Jianqiao1,3,4, QUAN Cong1,3, CHENG Maojie1,2, and SUN Dunlu1,3,4、*
Author Affiliations
  • 1Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei, Anhui 230037, China
  • 4Key Laboratory of Photonic Devices and Materials, Anhui Province, Hefei, Anhui 230031, China
  • show less
    References(80)

    [1] [1] LIN T, AOKI A, SAITO N, et al. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr∶CdSe laser[J]. Lasers in Surgery and Medicine, 2016, 48(10): 965-977.

    [2] [2] HOSSAIN M, NAKAMURA Y, YAMADA Y, et al. Effects of Er, Cr∶YSGG laser irradiation in human enamel and dentin: ablation and morphological studies[J]. Journal of Clinical Laser Medicine & Surgery, 1999, 17(4): 155-159.

    [3] [3] FRIED D, VISURI S R, FEATHERSTONE J D, et al. Infrared radiometry of dental enamel during Er∶YAG and Er∶YSGG laser irradiation[J]. Journal of Biomedical Optics, 1996, 1(4): 455-465.

    [4] [4] EBRAHIM-ZADEH M, HELMY A S, LEO G, et al. Mid-infrared coherent sources and applications: introduction[J]. Journal of the Optical Society of America B, 2021, 38(8): MIC1.

    [5] [5] ZHU H Z, LI Q, TAO C N, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 2021, 12(1): 1805.

    [6] [6] DING S J, REN H, ZOU Y, et al. Single crystal growth and property investigation of Dy3+ and Tb3+ co-doped Gd3Sc2Al3O12 (GSAG)∶multiple applications for GaN blue LD pumped all-solid-state yellow lasers and UV or blue light chip excited solid-state lighting[J]. Journal of Materials Chemistry C, 2021, 9(30): 9532-9538.

    [7] [7] KRNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue∶semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568.

    [8] [8] SHAFIR I, GAYER O, NAGLI L, et al. Middle-infrared luminescence of Nd ions in silver halide crystals[J]. Journal of Luminescence, 2007, 126(2): 541-546.

    [9] [9] QUAN C, SUN D L, ZHANG H L, et al. 13 W and 1 000 Hz of a 2.7 m laser on the 968 nm LD side-pumped Er∶YAP crystal with concave end-faces[J]. Optics Express, 2021, 29(14): 21655-21663.

    [10] [10] WANG Y, LI J F, ZHU Z J, et al. Mid-infrared emission in Dy∶YAlO3 crystal[J]. Optical Materials Express, 2014, 4(6): 1104-1111.

    [11] [11] QIAO Y, SUN D L, ZHANG H L, et al. Spectroscopy and 3.01 m laser performance of Ho∶YAP oxide crystal pumped by 1 150 nm Raman laser[J]. Optics & Laser Technology, 2023, 157:108728.

    [13] [13] GUILLEMOT L, LOIKO P, KIFLE E, et al. Watt-level mid-infrared continuous-wave Tm∶YAG laser operating on the 3H4 → 3H5 transition[J]. Optical Materials, 2020, 101:109745.

    [14] [14] ZHARIKOV E V, ZHEKOV V I, KULEVSKII L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at =2.94 m[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039-1040.

    [15] [15] SANAMYAN T. Diode pumped cascade Er∶Y2O3 laser[J]. Laser Physics Letters, 2015, 12(12): 125804.

    [16] [16] HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 m laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226:117502.

    [17] [17] YOU Z Y, WANG Y, XU J L, et al. Diode-end-pumped midinfrared multiwavelength Er∶Pr∶GGG laser[J]. IEEE Photonics Technology Letters, 2014, 26(7): 667-670.

    [18] [18] IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040.

    [19] [19] SANAMYAN T, KANSKAR M, XIAO Y, et al. High power diode-pumped 2.7 m Er3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 2011, 19(S5): A1082-A1087.

    [20] [20] WANG J, ZHU X, MOLLAEE M, et al. Efficient energy transfer from Er3+ to Ho3+ and Dy3+ in ZBLAN glass[J]. Optics Express, 2020, 28(4): 5189-5199.

    [23] [23] NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7—3 m) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407.

    [25] [25] LI Y C, DOU B L, XIAO Z, et al. Visible-infrared luminescence of Er3+-doped fluorotellurite glasses[J]. Optical Materials, 2020, 105:109900.

    [26] [26] REN H, DING S J, LI H Y, et al. Growth, structure and upconversion properties of Yb3+ and Er3+ co-doped Gd3Sc2Al3O12 crystal[J]. Journal of Luminescence, 2022, 251, 119149.

    [27] [27] HIMICS D, STRIZIK L, OSWALD J, et al. 1.2 m and 1.5 m near-infrared photoluminescence and visible upconversion photoluminescence in GeGaS∶Er3+/Ho3+ glasses under 980 nm excitation[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17314-17322.

    [28] [28] TIKERPAE M, JACKSON S D, KING T A. Theoretical comparison of Er3+-doped crystal lasers[J]. Journal of Modern Optics, 1998, 45(6): 1269-1284.

    [30] [30] LIU Y, PAN F, TU C, et al. Spectroscopic properties of Er3+/Yb3+/Ho3+∶CaLaGa3O7 and Er3+/Yb3+/Eu3+∶CaLaGa3O7 crystals used in mid-infrared lasers[J]. Laser Physics Letters, 2020, 17(6): 065703.

    [31] [31] CHEN J K, SUN D L, LUO J Q, et al. Spectroscopic properties and diode end-pumped 2.79 m laser performance of Er, Pr∶GYSGG crystal[J]. Optics Express, 2013, 21(20): 23425-23432.

    [32] [32] WANG Y, YOU Z Y, LI J F, et al. Spectroscopic investigations of highly doped Er3+∶GGG and Er3+/Pr3+∶GGG crystals[J]. Journal of Physics D∶Applied Physics, 2009, 42(21): 215406.

    [33] [33] MOULTON P F, MANNI J G, RINES G A. Spectroscopic and laser characteristics of Er, Cr∶YSGG[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 960-973.

    [34] [34] LUO J Q, SUN D L, ZHANG H L, et al. Growth, spectroscopy, and laser performance of a 2.79 m Cr, Er, Pr∶GYSGG radiation-resistant crystal[J]. Optics Letters, 2015, 40(18): 4194-4197.

    [36] [36] MUK J, YASUHARA R, SMR M, et al. Development of 2.7—m Er∶Y2O3 ceramic laser operated at room temperature[C]//Proceedings of SPIE, High-Power, High-Energy, and High-Intensity Laser Technology III, May 15, 2017, Prague, Czech Republic. Bellingham: SPIE, 2017, 10238: 1023816.

    [37] [37] LIU J S, SONG J H, MEI B C, et al. Fabrication and mid-infrared property of Er∶CaF2 transparent ceramics[J]. Materials Research Bulletin, 2019, 111:158-164.

    [38] [38] SHITOV V, BASYROVA L, LOIKO P, et al. Mid-infrared emission properties of transparent Er∶YScO3 laser ceramic[C]//2022 International Conference Laser Optics (ICLO), June 20-24, 2022, Saint Petersburg, Russian Federation. New York: IEEE, 2022.

    [39] [39] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2(12): 721-727.

    [40] [40] QIN Z P, XIE G Q, ZHANG H, et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 m[J]. Optics Express, 2015, 23(19): 24713-24718.

    [41] [41] SHEN Y L, WANG Y S, ZHU F, et al. 200 J, 13 ns Er∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 2021, 46(5): 1141-1144.

    [42] [42] ZHU X S, ZHU G W, WEI C, et al. Pulsed fluoride fiber lasers at 3 m [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A15-A28.

    [43] [43] QIN Z P, XIE G Q, ZHAO C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59.

    [44] [44] CHEN J K, SUN D L, LUO J Q, et al. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho∶GYSGG crystals[J]. Optics Letters, 2013, 38(8): 1218-1220.

    [45] [45] WANG L, HUANG H T, SHEN D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 m[J]. Optics Express, 2014, 22(16): 19495-19503.

    [46] [46] LIU J J, FAN X W, LIU J, et al. Mid-infrared self-Q-switched Er, Pr∶CaF2 diode-pumped laser[J]. Optics Letters, 2016, 41(20): 4660-4663.

    [47] [47] FANG Z Q, SUN D L, LUO J Q, et al. Influence of Cr3+ concentration on the spectroscopy and laser performance of Cr, Er∶YSGG crystal[J]. Optical Engineering, 2017, 56(10): 107111.

    [48] [48] SU L B, GUO X S, JIANG D P, et al. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er∶SrF2 single crystal[J]. Optics Express, 2018, 26(5): 5558-5563.

    [49] [49] ZHANG H L, SUN X J, SUN D L, et al. Improvement of single pulse energy and laser efficiency by co-doping Cr3+ ions into the Er∶YAG crystal[J]. Infrared Physics & Technology, 2019, 97:197-202.

    [50] [50] AYDIN Y O, FORTIN V, VALLE R, et al. Towards power scaling of 2.8 m fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545.

    [51] [51] YIN D L, WANG J, WANG Y L, et al. Fabrication of Er∶Y2O3 transparent ceramics for 2.7 m mid-infrared solid-state lasers[J]. Journal of the European Ceramic Society, 2020, 40(2): 444-448.

    [52] [52] HU L Z, SUN D L, WANG Y, et al. Laser performance of high repetition frequency on a 970 nm LD side-pumped Er∶YSGG crystal operated at 2.79 m[J]. Infrared Physics & Technology, 2020, 105:103224.

    [53] [53] WANG S Z, TANG F, LIU J J, et al. Growth and highly efficient mid-infrared continuous-wave laser of lightly-doped Er∶SrF2 single-crystal fibers[J]. Optical Materials, 2019, 95:109255.

    [54] [54] ZHANG Y S, CAI Y Q, XU B, et al. Single-mode oscillations of diode-pumped mid-infrared Er∶Y2O3 ceramic microchip lasers at 2.7 m[J]. Optics Express, 2019, 27(22): 31783-31789.

    [55] [55] QUAN C, SUN D L, LUO J Q, et al. LGS electro-optically Q-switched Er, Pr∶YAP crystal laser operated at 2.7 m[J]. OSA Continuum, 2020, 3(3): 552-559.

    [56] [56] DONG K P, SUN D L, ZHANG H L, et al. Spectroscopy and LD end-pumped high power 2.79 m CW laser from an Er∶LuYSGG mixed crystal[J]. Journal of Luminescence, 2021, 236:118107.

    [57] [57] ZHAO X Y, SUN D L, LUO J Q, et al. Spectroscopic and laser properties of Er∶LuSGG crystal for high-power ~2.8 m mid-infrared laser[J]. Optics Express, 2020, 28(6): 8843-8852.

    [58] [58] ZONG M, YANG X J, LIU J J, et al. Er∶CaF2 single-crystal fiber Q-switched laser with diode pumping in the mid-infrared region[J]. Journal of Luminescence, 2020, 227:117519.

    [59] [59] YAO W, UEHARA H, KAWASE H, et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2 920 nm[J]. Optics Express, 2020, 28(13): 19000-19007.

    [60] [60] WANG S B, QU B, TIAN Y, et al. Cascade Er∶YAG pulsed lasers at room temperature[J]. Optics Letters, 2021, 46(22): 5731-5734.

    [61] [61] WANG S B, TIAN Y, QU B, et al. Experimental exploration of room-temperature Er∶YAG cascade laser[C]//International Conference on Optics and Machine Vision (ICOMV 2022), May 12, 2022, Guangzhou, China. Bellingham: SPIE, 2022, 12173: 121730F.

    [62] [62] QUAN C, SUN D, ZHANG H, et al. Performance of a 968 nm laser-diode side-pumped, electro-optical Q-switched Er, Pr∶YAG laser with emission at 2.7 m[J]. Optical Engineering, 2021, 60(6): 066112.

    [63] [63] HAN Z Y, SUN D L, ZHANG H L, et al. Investigation of temperature distribution and 2.79 m laser performance on the Er∶YSGG single crystal fiber[J]. Optics Communications, 2022, 502:127426.

    [64] [64] HU L Z, SUN D L, ZHANG H L, et al. Laser performance of LD side-pumped high-efficiency YSGG/Er∶YSGG/YSGG bonding crystal rod with concave end-faces[J]. Infrared Physics & Technology, 2021, 119:103944.

    [65] [65] ZONG M Y, WANG Y F, ZHANG Z, et al. High-power 2.8 m lasing in a lightly-doped Er∶CaF2 crystal[J]. Journal of Luminescence, 2022, 250:119089.

    [66] [66] YE X L, LIU Z Y, ZHANG S, et al. High efficiency and high beam quality Er∶YSGG mid-infrared continuous-wave laser[J]. Infrared Physics & Technology, 2022, 127:104427.

    [67] [67] YE X L, XU X F, REN H J, et al. Study of LD side-pumped two-rod Er∶YSGG mid-Infrared laser with 61 W output power[J]. Optics Communications, 2022, 507:127608.

    [68] [68] HAN Z Y, SUN D L, ZHANG H L, et al. 962 nm LD end-pumped Er∶YSGG cascade pulsed lasers at room temperature[J]. Infrared Physics & Technology, 2022, 127:104432.

    [69] [69] ZHANG H, BIAN J T, SUN D L, et al. Improvement of 2.8 m laser performance on LD side-pumped LuYSGG/Er∶LuYSGG/LuYSGG bonding crystal[J]. Optics & Laser Technology, 2023, 158:108840.

    [70] [70] FANG Z Q, SUN D L, LUO J Q, et al. A modified formula of thermal focal length for lamp pumping Cr, Er∶YSGG crystal with high performance 2.79 m laser[J]. Optics & Laser Technology, 2019, 115:398-403.

    [72] [72] CHEN Y Z, SUN D L, ZHANG H L, et al. 2.79 m Cr, Er∶YSGG laser with a high energy realized by thermal bonding and concave end-face[J]. Optics & Laser Technology, 2023, 162:109255.

    [74] [74] CAI E, XU J, XIA Y, et al. Zirconium telluride saturable absorber for Er∶YAP dual-wavelength ultrafast laser at 3 m[J]. Optics & Laser Technology, 2022, 155:108451.

    [75] [75] FANG Z Q, SUN D L, LUO J Q, et al. Thermal analysis and laser performance of a GYSGG/Cr, Er, Pr∶GYSGG composite laser crystal operated at 2.79 m[J]. Optics Express, 2017, 25(18): 21349-21357.

    [76] [76] HAN Z Y, SUN D L, ZHANG H L, et al. LD end-pumped Er, Pr∶GYSGG single crystal fiber laser as a potential mid-infrared seed source applied in radiation environment[J]. Journal of Luminescence, 2023, 253:119448.

    [77] [77] DONG K P, SUN D L, ZHANG H L, et al. Investigation of defect, mechanical, thermal properties and refractive index on an Er∶LuYSGG mixed laser crystal[J]. Optical Materials, 2021, 121:111568.

    [78] [78] ZHANG H L, BIAN J T, SUN D L, et al. Er3+ doped LuYSGG crystal as a potential 2.79 m radiation-resistant laser material[J]. Optics & Laser Technology, 2022, 152:108121.

    [79] [79] DONG K P, SUN D L, ZHANG H L, et al. 2.79 m laser performance of a 968 nm LD side-pumped Er∶LuYSGG mixed crystal[J]. CrystEngComm, 2022, 24(26): 4705-4712.

    [80] [80] SHARMA S, SHORI R, MILLER J K. Spectroscopic properties of Er-sesquoxides[C]//Solid State Lasers XXI∶Technology and Devices, February 15, 2012, San Francisco, California, United States. Bellingham: SPIE, 2012, 8235: 82350F.

    [81] [81] WANG J T, WEI J C, LIU W J, et al. 2.8 m passively Q-switched Er∶ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Applied Optics, 2020, 59(29): 9165-9168.

    [82] [82] HU J B, YANG L L, CHEN L L, et al. Nanosecond mid-infrared pulse generation modulated by platinum ditelluride nanosheets[J]. Laser Physics Letters, 2022, 19(7): 075107.

    [83] [83] TANG P, QIN Z, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 m[J]. Optics Letter, 2015, 40(21): 4855-4858.

    [84] [84] DUVAL S, BERNIER M, FORTIN V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626.

    [85] [85] UEHARA H, KONISHI D, GOYA K, et al. Power scalable 30 W mid-infrared fluoride fiber amplifier[J]. Optics Letters, 2019, 44(19): 4777-4780.

    [86] [86] SCHAFER C A, UEHARA H, KONISHI D, et al. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 m[J]. Optics Letters, 2018, 43(10): 2340-2343.

    [87] [87] WEI C, LUO H Y, SHI H X, et al. Widely wavelength tunable gain-switched Er3+ doped ZBLAN fiber laser around 2.8 m[J]. Optics Express, 2017, 25(8): 8816-8827.

    [88] [88] HUANG J P, PANG M, JIANG X, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 2020, 7(6): 574-579.

    Tools

    Get Citation

    Copy Citation Text

    LI Hongyuan, ZHANG Huili, LUO Jianqiao, QUAN Cong, CHENG Maojie, SUN Dunlu. Research progress of Erbium-doped gain medium for laser operation in 2.7—3 μm[J]. Journal of Optoelectronics · Laser, 2024, 35(8): 885

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 15, 2023

    Accepted: Dec. 13, 2024

    Published Online: Dec. 13, 2024

    The Author Email: SUN Dunlu (dlsun@aiofm.ac.cn)

    DOI:10.16136/j.joel.2024.08.0107

    Topics