Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1211003(2024)

Color 3D Reconstruction for Used Machinery Parts using Improved SGM

Zelin Zhang1,2, Xing Cao1, Lei Wang1,2、*, and Xuhui Xia1,2
Author Affiliations
  • 1Key Laboratory of Metallurgical Equipment and Its Control, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 2Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • show less
    Figures & Tables(18)
    Color 3D reconstruction process
    Polaroid correction diagram
    Flowchart of the proposed algorithm
    Subpixel coordinate
    Cross region
    Distance weighting
    Principle of triangulation measurement
    Binocular vision detection platform
    Four kinds of parts with different textures and structures
    Image enhancement results before and after enhancement. (a) Part binocular images; (b) binocular images of the parts after image enhancement
    Correction results of part image. (a) Before correction;(b) after correction
    Parallax map results of different algorithms. (a) SGBM algorithm; (b) TAD-Census algorithm; (c) TFM algorithm; (d) proposed algorithm
    Color 3D models generated by different algorithms. (a) Original images;(b) SGBM algorithm;(c) TAD-Census algorithm;(d) TFM algorithm; (e) proposed algorithm
    Size reference object
    • Table 1. Calibration results of binocular camera

      View table

      Table 1. Calibration results of binocular camera

      Camera parameterLeft cameraRight camera
      Internal parameter matrix1734.4540643.31301733.655513.1490011741.5470654.44301740.947540.734001
      R0.9982-0.0054-0.05930.00530.9999-0.00070.0593-0.00050.9982
      T-96.9670.721-0.939
      Distortion coefficient

      Cl=-0.1010.194-0.002-0.0010.915

      Cr=-0.0930.224-0.0010.001-0.621

    • Table 2. Algorithm parameters in this paper

      View table

      Table 2. Algorithm parameters in this paper

      Parameterλbtλsλgαβγτ1τ2θL1L2
      Value30301000.880.10.021520401216
    • Table 3. Comparison results of SSIM and MSE for each algorithm

      View table

      Table 3. Comparison results of SSIM and MSE for each algorithm

      CategorySSIMMSE
      SGBMTAD-CensusTFMProposed algorithmSGBMTAD-CensusTFMProposed algorithm
      Part 10.2260.4130.3980.4930.4120.3160.2870.222
      Part 20.2320.4740.5840.6170.4980.3090.2610.163
      Part 30.3930.4920.4870.5910.3970.3240.2580.184
      Part 40.2980.6130.6220.6730.4860.2280.2040.133
    • Table 4. Comparison of size measurement results of each algorithm

      View table

      Table 4. Comparison of size measurement results of each algorithm

      AlgorithmActual size /mmMeasured size /mmError /mmRelative error /%
      SGBM

      A

      B

      C

      77.46

      124.26

      17.13

      2.46

      2.26

      2.13

      3.28

      1.85

      14.2

      TAD-Census

      A

      B

      C

      75.97

      123.16

      16.21

      0.97

      1.16

      1.21

      1.29

      0.95

      8.06

      TFM

      A

      B

      C

      76.02

      123.21

      15.9

      1.02

      1.21

      0.90

      1.36

      0.9

      6

      Proposed algorithm

      A

      B

      C

      75.61

      122.99

      15.21

      0.46

      0.99

      0.21

      0.81

      0.78

      1.46

    Tools

    Get Citation

    Copy Citation Text

    Zelin Zhang, Xing Cao, Lei Wang, Xuhui Xia. Color 3D Reconstruction for Used Machinery Parts using Improved SGM[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1211003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jul. 5, 2023

    Accepted: Aug. 11, 2023

    Published Online: Jun. 5, 2024

    The Author Email: Lei Wang (candywang@wust.edu.cn)

    DOI:10.3788/LOP231667

    CSTR:32186.14.LOP231667

    Topics