NUCLEAR TECHNIQUES, Volume. 48, Issue 4, 040610(2025)

Analysis of load following capability for small fluoride-salt-cooled high- temperature advanced reactor

Xindi LYU1, Dalin ZHANG1、*, Xinyu LI1, Yu LIANG2, Jian DENG2, Suizheng QIU1, and Guanghui SU1
Author Affiliations
  • 1School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • 2Nuclear Power Institute of China, Chengdu 610213, China
  • show less
    Figures & Tables(19)
    Schematic diagram of the FuSTAR system (color online)
    Schematic diagram of the FuSTAR reactor vessel (color online)
    Radial power distribution of FuSTAR components (MW) (color online)
    Axial power distribution of FuSTAR components
    Schematic diagram of FuSTAR passive residual heat removal system (color online)
    Modeling diagram of FuSTAR thermal hydraulic system
    Logic diagram of FuSTAR control system
    Reactivity disturbance response of FuSTAR without control system (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    Reactivity disturbance response of FuSTAR under controlled system (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    FuSTAR load following characteristics for high power level in uncontrolled system (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    FuSTAR load following characteristics for low power level in uncontrolled system (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    FuSTAR load following characteristics for high power level under controlled system (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    FuSTAR load following characteristics for low power level under controlled system (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    Response of key parameters under linear rise and fall tests of load (a) Power, (b) Reactivity, (c) Key temperature parameters of core, (d) Core outlet temperature deviation
    • Table 1. FuSTAR overall parameters

      View table
      View in Article

      Table 1. FuSTAR overall parameters

      参数Parameter值Value
      热功率 Power / MW125
      运行压力Pressure / MPa~0.1
      进出口温度 Inlet and outlet temperature / K923.15/973.15
      堆本体冷却剂 Reactor vessel coolantFLiBe
      燃料 Fuel螺旋十字型燃料 Helical cruciform fuel
      慢化剂 Moderator石墨 Graphite
      包壳 Cladding碳-碳复合材料 C-C composite material
      燃料多普勒系数 Fuel doppler coefficient / 10-5 K-1-3.23
      冷却剂温度反馈系数 Coolant temperature feedback coefficient / 10-5 K-1-0.21
      慢化剂温度反馈系数 Moderator temperature feedback coefficient / 10-5 K-1-0.12
      堆芯冷却方式 Core cooling method强迫循环 Forced circulation
      堆芯流量 Core mass flow rate / kg·s-11 050
      堆芯高度 Core height / m3
      余排系统冷却剂 Coolant for residual heat removal systemFLiNaK
      能量转换系统冷却剂 Coolant for energy conversion systemSCO2
      换热器 Heat exchangerPCHE
      换热器材料 Heat exchanger materialHastelloy-N
    • Table 2. Steady state calculations of FuSTAR

      View table
      View in Article

      Table 2. Steady state calculations of FuSTAR

      参数

      Parameter

      设计值

      Design value

      计算值

      Calculated value

      相对误差

      Relative error / %

      热功率 Power / MW125125.020.016
      堆芯入口温度 Core inlet temperature / K923.15923.140.001
      堆芯出口温度 Core outlet temperature / K973.15973.030.012
      堆芯流量 Core mass flow rate / kg·s-11 0501 050.60.057
      堆芯压差 Core pressure difference / MPa0.140.1362.857
    • Table 3. Safety temperature limit of FuSTAR

      View table
      View in Article

      Table 3. Safety temperature limit of FuSTAR

      温度限值

      Temperature limit

      数值

      Value

      燃料峰值温度

      Maximum fuel temperature / K

      <1 573

      包壳表面峰值温度

      Maximum temperature of cladding / K

      <1 703

      FLiBe最高温度

      Maximum temperature of FLiBe / K

      <1 003

      FLiBe最低温度

      Minimum temperature of FLiBe / K

      >732

      FLiNaK最低温度

      Minimum temperature of FLiNaK / K

      >728
    • Table 4. Effect of control system on overshoot and settling time under different load step conditions.

      View table
      View in Article

      Table 4. Effect of control system on overshoot and settling time under different load step conditions.

      工况

      Working condition

      有无控制系统

      Availability of control system

      功率超调量

      Power overshoot / %

      功率调节时间

      Power adjustment time / s

      100% FP–90% FP无控制 Uncontrolled0.94680
      有控制 Under control0.31342
      90% FP–100% FP无控制 Uncontrolled0.91672
      有控制 Under control0.29315
      20% FP–30% FP无控制 Uncontrolled11.281 379
      有控制 Under control3.80279
      30% FP–20% FP无控制 Uncontrolled13.841 612
      有控制 Under control4.55312
    • Table 5. Effect of control system on overshoot and settling time under linear rise and fall of load

      View table
      View in Article

      Table 5. Effect of control system on overshoot and settling time under linear rise and fall of load

      工况

      Working condition

      有无控制系统

      Availability of control system

      功率超调量

      Power overshoot / %

      功率调节时间

      Power adjustment time / s

      100%FP – 5%FP/min – 50%FP无控制 Uncontrolled6.361 663
      有控制 Under control0.98719
      50%FP – 5%FP/min – 100%FP无控制 Uncontrolled1.811 515
      有控制 Under control0.23678
    Tools

    Get Citation

    Copy Citation Text

    Xindi LYU, Dalin ZHANG, Xinyu LI, Yu LIANG, Jian DENG, Suizheng QIU, Guanghui SU. Analysis of load following capability for small fluoride-salt-cooled high- temperature advanced reactor[J]. NUCLEAR TECHNIQUES, 2025, 48(4): 040610

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR ENERGY SCIENCE AND ENGINEERING

    Received: May. 10, 2024

    Accepted: --

    Published Online: Jun. 3, 2025

    The Author Email: Dalin ZHANG (张大林)

    DOI:10.11889/j.0253-3219.2025.hjs.48.240185

    Topics