Journal of Synthetic Crystals, Volume. 50, Issue 8, 1431(2021)
Effect of GaAs Substrate Temperature on Indium Droplets Grown by Droplet Epitaxy
[1] [1] CASTELVECCHI D. Quantum computers ready to leap out of the lab in 2017[J]. Nature, 2017, 541(7635): 9-10.
[2] [2] SHIELDS, ANDREW J. Semiconductor quantum light sources[J]. Nature Photonics, 2007, 1(4): 215-223.
[3] [3] LYTVYN P M, MAZUR Y I, BENAMARA M, et al. Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux[J]. Applied Surface Science, 2014, 305: 689-696.
[4] [4] LEDENTSOV N N. Quantum dot laser[J]. Semiconductor Science and Technology, 2011, 26(1): 014001.
[6] [6] MICHLER P. Quantum dots for quantum information technologies[M]. Cham: Springer International Publishing, 2017.
[7] [7] AKOPIAN N, LINDNER N H, POEM E, et al. Entangled photon pairs from semiconductor quantum dots[J]. Physical Review Letters, 2006, 96(13): 130501.
[8] [8] KLOEFFEL C, LOSS D. Prospects for spin-based quantum computing in quantum dots[J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 51-81.
[9] [9] RAU M, HEINDEL T, UNSLEBER S, et al. Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources: a proof of principle experiment[J]. New Journal of Physics, 2014, 16(4): 043003.
[10] [10] KOGUCHI N, TAKAHASHI S, CHIKYOW T. New MBE growth method for InSb quantum well boxes[J]. Journal of Crystal Growth, 1991, 111(1/2/3/4): 688-692.
[11] [11] STOCK E, WARMING T, OSTAPENKO I, et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs[J]. Applied Physics Letters, 2010, 96(9): 093112.
[12] [12] HA N, MANO T, KURODA T, et al. Current-injection quantum-entangled-pair emitter using droplet epitaxial quantum dots on GaAs(111)A[J]. Applied Physics Letters, 2019, 115(8): 083106.
[13] [13] YU P, WU J, GAO L, et al. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy[J]. Solar Energy Materials and Solar Cells, 2017, 161: 377-381.
[14] [14] AHMAD KAMARUDIN M, HAYNE M, ZHUANG Q D, et al. GaSb quantum dot morphology for different growth temperatures and the dissolution effect of the GaAs capping layer[J]. Journal of Physics D: Applied Physics, 2010, 43(6): 065402.
[15] [15] LABELLA V P, BULLOCK D W, EMERY C, et al. Enabling electron diffraction as a tool for determining substrate temperature and surface morphology[J]. Applied Physics Letters, 2001, 79(19): 3065-3067.
[16] [16] VOORHEES P W. The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985, 38(1/2): 231-252.
[17] [17] Schmidt O. Lateral aligment of epitaxial quantum dots[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
[18] [18] VENABLES J A, PERSAUD R, METCALFE F L, et al. Rate and diffusion analyses of surface processes[J]. Journal of Physics and Chemistry of Solids, 1994, 55(10): 955-964.
[19] [19] VOOK R W. Nucleation and growth of thin films[J]. Optical Engineering, 1984, 23(3): 343-349.
[20] [20] WALTON D. Nucleation of vapor deposits[J]. The Journal of Chemical Physics, 1962, 37(10): 2182-2188.
[21] [21] KIRAVITTAYA S, RASTELLI A, SCHMIDT O G. Advanced quantum dot configurations[J]. Reports on Progress in Physics, 2009, 72(4): 046502.
Get Citation
Copy Citation Text
HUANG Zechen, JIANG Chong, LI Ershi, LI Jiawei, SONG Juan, WANG Yi, GUO Xiang, LUO Zijiang, DING Zhao. Effect of GaAs Substrate Temperature on Indium Droplets Grown by Droplet Epitaxy[J]. Journal of Synthetic Crystals, 2021, 50(8): 1431
Category:
Received: Mar. 9, 2021
Accepted: --
Published Online: Nov. 6, 2021
The Author Email: Zechen HUANG (452252257@qq.com)
CSTR:32186.14.