Journal of Synthetic Crystals, Volume. 51, Issue 5, 814(2022)
Research Progress of Nuclear Radiation Detectors with CVD Synthetic Diamond
[1] [1] BASSI G, BOSISIO L, CRISTAUDO P, et al. Calibration of diamond detectors for dosimetry in beam-loss monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1004: 165383.
[2] [2] ZHANG M L, XIA Y B, WANG L J, et al. Response of chemical vapor deposition diamond detectors to X-ray[J]. Solid State Communications, 2004, 130(6): 425-428.
[3] [3] SATO Y, SHIMAOKA T, KANEKO J H, et al. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 147-150.
[4] [4] BALMER R S, BRANDON J R, CLEWES S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications[J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364221.
[5] [5] CANALI C, GATTI E, KOZLOV S F, et al. Electrical properties and performances of natural diamond nuclear radiation detectors[J]. Nuclear Instruments and Methods, 1979, 160(1): 73-77.
[6] [6] KIM M, SEO J H, SINGISETTI U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354.
[7] [7] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432.
[8] [8] HEARNE S M, TRAJKOV E, JAMIESON D N, et al. The role of charge trapping at grain boundaries on charge transport in polycrystalline chemical vapor deposited diamond based detectors[J]. Journal of Applied Physics, 2006, 99(11): 113703.
[9] [9] LIU L Y, OUYANG X P, ZHANG J F, et al. Polycrystalline CVD diamond detector: fast response and high sensitivity with large area[J]. AIP Advances, 2014, 4(1): 017114.
[10] [10] ICHIKAWA K, SHIMAOKA T, KATO Y, et al. Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging[J]. Journal of Applied Physics, 2020, 128(15): 155302.
[11] [11] MOHAPATRA S, SAHU P K, RATH S, et al. Defect characterization and numerical modelling of single-crystal ultra-pure intrinsic diamond[J]. Diamond and Related Materials, 2020, 106: 107822.
[12] [12] TRAN T T, KIANINIA M, BRAY K, et al. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters[J]. APL Photonics, 2017, 2(11): 116103.
[13] [13] MLLER T, HEPP C, PINGAULT B, et al. Optical signatures of silicon-vacancy spins in diamond[J]. Nature Communications, 2014, 5: 3328.
[14] [14] IWASAKI T, ISHIBASHI F, MIYAMOTO Y, et al. A germanium-vacancy single photon source in diamond[EB/OL]. 2015: arXiv: 1503.04938[cond-mat.mtrl-sci]. https://arxiv.org/abs/1503.04938
[16] [16] WANG W H, WANG Y, SHU G Y, et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth[J]. New Carbon Materials, 2021, 36(6): 1034-1045.
[17] [17] KOIZUMI S, UMEZAWA H, PERNOT J, et al. Power electronics device applications of diamond semiconductors[M]. Oxford: Elsevier, 2018.
[19] [19] HIRD J R, FIELD J E. Diamond polishing[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2052): 3547-3568.
[20] [20] ACHARD J, TALLAIRE A, MILLE V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates[J]. Physica Status Solidi (a), 2014, 211(10): 2264-2267.
[21] [21] YAMAMOTO M, TERAJI T, ITO T. Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates[J]. Journal of Crystal Growth, 2005, 285(1/2): 130-136.
[22] [22] MUCHNIKOV A B, VIKHAREV A L, BUTLER J E, et al. Homoepitaxial growth of CVD diamond after ICP pretreatment[J]. Physica Status Solidi (a), 2015, 212(11): 2572-2577.
[23] [23] HICKS M L, PAKPOUR-TABRIZI A C, ZUERBIG V, et al. Optimizing reactive ion etching to remove sub-surface polishing damage on diamond[J]. Journal of Applied Physics, 2019, 125(24): 244502.
[24] [24] SILVA F, ACHARD J, BRINZA O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth[J]. Diamond and Related Materials, 2009, 18(5/6/7/8): 683-697.
[25] [25] LANGER J L, CIMALLA V, PRESCHER M, et al. Quality assessment of in situ plasma-etched diamond surfaces for chemical vapor deposition overgrowth[J]. Physica Status Solidi (a), 2021, 218(11): 2100035.
[26] [26] TAVARES C, KOIZUMI S, KANDA H. Effects of RIE treatments for{111}diamond substrates on the growth of P-doped diamond thin films[J]. Physica Status Solidi (a), 2005, 202(11): 2129-2133.
[27] [27] TERAJI T, TANIGUCHI T, KOIZUMI S, et al. Chemical vapor deposition of 12C isotopically enriched polycrystalline diamond[J]. Japanese Journal of Applied Physics, 2012, 51: 090104.
[28] [28] LIU J L, LIN L Z, ZHAO Y, et al. Homo-epitaxial growth of single crystal diamond in the purified environment by active O atoms[J]. Vacuum, 2018, 155: 391-397.
[29] [29] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712.
[30] [30] NISTOR S V, STEFAN M, RALCHENKO V, et al. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates[J]. Journal of Applied Physics, 2000, 87(12): 8741-8746.
[31] [31] ZHAO Y, GUO Y Z, LIN L Z, et al. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD[J]. Journal of Crystal Growth, 2018, 491: 89-96.
[32] [32] SECROUN A, BRINZA O, TARDIEU A, et al. Dislocation imaging for electronics application crystal selection[J]. Physica Status Solidi (a), 2007, 204(12): 4298-4304.
[33] [33] SEIBT M, KHALIL R, KVEDER V, et al. Electronic states at dislocations and metal silicide precipitates incrystalline silicon and their role insolar cell materials[J]. Applied Physics A, 2009, 96(1): 235-253.
[34] [34] BERDERMANN E, POMORSKI M, DE BOER W, et al. Diamond detectors for hadron physics research[J]. Diamond and Related Materials, 2010, 19(5/6): 358-367.
[35] [35] GALBIATI A, LYNN S, OLIVER K, et al. Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1863-1874.
[37] [37] LIU J W, CHANG J F, ZHANG J Z, et al. Design, fabrication and testing of CVD diamond detectors with high performance[J]. AIP Advances, 2019, 9(4): 045205.
[38] [38] SATO Y, MURAKAMI H, SHIMAOKA T, et al. Single-crystal CVD diamond detector for high-resolution particle spectrometry[J]. Europhysics Letters, 2014, 108(4): 42001.
[40] [40] SHIMAOKA T, KOIZUMI S, TANAKA M M. Diamond photovoltaic radiation sensor using pn junction[J]. Applied Physics Letters, 2018, 113(9): 093504.
[41] [41] KASAP S, RAMASWAMI K O, KABIR M Z, et al. Corrections to the Hecht collection efficiency in photoconductive detectors under large signals: non-uniform electric field due to drifting and trapped unipolar carriers[J]. Journal of Physics D: Applied Physics, 2019, 52(13): 135104.
[42] [42] LIOLIOU G, LEFEUVRE G, BARNETT A M. High temperature (≤160 ℃) X-ray and β-particle diamond detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 165025.
[43] [43] GALLIN-MARTEL M L, CURTONI S, MARCATILI S, et al. X-ray beam induced current analysis of CVD diamond detectors in the perspective of a beam tagging hodoscope development for hadrontherapy on-line monitoring[J]. Diamond and Related Materials, 2021, 112: 108236.
[44] [44] CAZZANIGA C, KASTRIOTOU M, GARCA ALA R, et al. Measurements of ultra-high energy lead ions using silicon and diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164671.
[45] [45] KOBAYASHI M I, ANGELONE M, YOSHIHASHI S, et al. Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD[J]. Fusion Engineering and Design, 2020, 161: 112063.
[46] [46] PASSERI M, POMPILI F, ESPOSITO B, et al. Assessment of single crystal diamond detector radiation hardness to 14 MeV neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1010: 165574.
[47] [47] ABDEL-RAHMAN M A E, LOHSTROH A, BRYANT P. Alpha spectroscopy and X-ray induced photocurrent studies of a SC CVD diamond detector fabricated with PLD contacts[J]. Radiation Physics and Chemistry, 2019, 164: 108357.
[48] [48] SU K, REN Z Y, ZHANG J F, et al. High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector[J]. Applied Physics Letters, 2020, 116(9): 092104.
[50] [50] LIU Y H, LOH C W, ZHANG J L, et al. Proton irradiation tests of single crystal diamond detector at CIAE[J]. Nuclear Materials and Energy, 2020, 22: 100735.
[51] [51] POMORSKI M, CAYLAR B, BERGONZO P. Super-thin single crystal diamond membrane radiation detectors[J]. Applied Physics Letters, 2013, 103(11): 112106.
[52] [52] LOHSTROH A, SELLIN P J, WANG S G, et al. Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond[J]. Applied Physics Letters, 2007, 90(10): 102111.
[53] [53] TARUN A, LEE S J, YAP C M, et al. Impact of impurities and crystal defects on the performance of CVD diamond detectors[J]. Diamond and Related Materials, 2016, 63: 169-174.
[54] [54] SU K, HE Q, ZHANG J F, et al. Device performance of chemical vapor deposition monocrystal diamond radiation detectors correlated with the bulk diamond properties[J]. Journal of Physics D: Applied Physics, 2021, 54(14): 145105.
[55] [55] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 151905.
[56] [56] CHERNYKH S V, CHERNYKH A V, TARELKIN S A, et al. High-pressure high-temperature single-crystal diamond type Ⅱa characterization for particle detectors[J]. Physica Status Solidi (a), 2020, 217(8): 1900888.
[57] [57] SATO S I, MAKINO T, OHSHIMA T, et al. Transient current induced in thin film diamonds by swift heavy ions[J]. Diamond and Related Materials, 2017, 75: 161-168.
[58] [58] TSUBOTA M, KANEKO J H, MIYAZAKI D, et al. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789: 50-56.
[59] [59] VARTSKY D, GOLDBERG M, EISEN Y, et al. Radiation induced polarization in CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 263(2/3): 457-462.
[60] [60] HOLMES J M, DUTTA M, KOECK F A, et al. Neutralizing the polarization effect of diamond diode detectors using periodic forward bias pulses[J]. Diamond and Related Materials, 2019, 94: 162-165.
[61] [61] MANFREDOTTI C, VITTONE E, FIZZOTTI F, et al. Effects of light on the ‘primed’ state of CVD diamond nuclear detectors[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 446-450.
[62] [62] RAMOS M R, CRNJAC A, COSIC D, et al. Ion microprobe study of the polarization quenching techniques in single crystal diamond radiation detectors[J]. Materials, 2022, 15(1): 388.
[63] [63] ZOU M N, BOHON J, SMEDLEY J, et al. Proton radiation effects on carrier transport in diamond radiation detectors[J]. AIP Advances, 2020, 10(2): 025004.
[64] [64] STEINEGGER P, DRESSLER R, EICHLER R, et al. Diamond detectors for high-temperature transactinide chemistry experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 850: 61-67.
[65] [65] KUMAR A, KUMAR A, TOPKAR A, et al. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 858: 12-17.
[66] [66] CRNJAC A, SKUKAN N, PROVATAS G, et al. Electronic properties of a synthetic single-crystal diamond exposed to high temperature and high radiation[J]. Materials, 2020, 13(11): 2473.
[67] [67] CRNJAC A, RAMOS M R, SKUKAN N, et al. Charge transport in single crystal CVD diamond studied at high temperatures[J]. Journal of Physics D: Applied Physics, 2021, 54(46): 465103.
[68] [68] OGASAWARA K, BROILES T W, COULTER K E, et al. Single crystal chemical vapor deposit diamond detector for energetic plasma measurement in space[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 131-137.
[69] [69] DUEAS J A, MORA J M, TRAEGER M, et al. Time response of 50 μm thickness single crystal diamond detectors[J]. Diamond and Related Materials, 2015, 55: 144-148.
[70] [70] BOSSINI E, MINAFRA N. Diamond detectors for timing measurements in high energy physics[J]. Frontiers in Physics, 2020, 8: 248.
[71] [71] TRISCHUK W, et al. Diamond particle detectors for high energy physics[J]. Nuclear and Particle Physics Proceedings, 2016, 273/274/275: 1023-1028.
[72] [72] POMPILI F, ESPOSITO B, MAROCCO D, et al. Radiation and thermal stress test on diamond detectors for the radial neutron camera of ITER[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 936: 62-64.
[74] [74] CURTONI S, GALLIN-MARTEL M L, MARCATILI S, et al. Performance of CVD diamond detectors for single ion beam-tagging applications in hadrontherapy monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015: 165757.
Get Citation
Copy Citation Text
MU Lianxi, ZENG Hansen, ZHU Xiaohua, TU Juping, LIU Jinlong, CHEN Liangxian, WEI Junjun, LI Chengming, OUYANG Xiaoping. Research Progress of Nuclear Radiation Detectors with CVD Synthetic Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 814
Category:
Received: Mar. 2, 2022
Accepted: --
Published Online: Jul. 7, 2022
The Author Email: Lianxi MU (mulianxi2021@163.com)
CSTR:32186.14.