Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2659(2024)
Research Progress in Crystallization and Optical Properties of Perovskite Quantum Dot Glass Regulated by Femtosecond Laser
[1] [1] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX?, X=Cl, Br,and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692–3696.
[2] [2] SU Y, CHEN X J, JI W Y, et al. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X=Cl, Br, I) perovskite QDs toward the tunability of entire visible light[J]. ACS Appl Mater Interfaces, 2017, 9(38): 33020–33028.
[3] [3] CHEN H T, GUO A Q, GU X Y, et al. Highly luminescent CsPbX3(X=Cl, Br, I) perovskite nanocrystals with tunable photoluminescence properties[J]. J Alloys Compd, 2019, 789: 392–399.
[4] [4] DEY A, YE J Z, DE A, et al. State of the art and prospects for halide perovskite nanocrystals[J]. ACS Nano, 2021, 15(7): 10775–10981.
[5] [5] EFROS A L, BRUS L E. Nanocrystal quantum dots: From discovery to modern development[J]. ACS Nano, 2021, 15(4): 6192–6210.
[6] [6] LAL N N, DKHISSI Y, LI W, et al. Perovskite tandem solar cells[J].Adv Energy Mater, 2017, 7(18): 1602761.
[7] [7] HU Y H, SCHLIPF J, WUSSLER M, et al. Hybrid perovskite/perovskite heterojunction solar cells[J]. ACS Nano, 2016, 10(6): 5999–6007.
[8] [8] HASSAN Y, PARK J H, CRAWFORD M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs[J]. Nature, 2021,591(7848): 72–77.
[9] [9] LI C H A, KO P K, CHAN C C S, et al. Mixed ruddlesden–popper and dion–jacobson phase perovskites for stable and efficient blue perovskite LEDs[J]. Adv Funct Mater, 2023, 33(41): 2303301.
[10] [10] WANG D, LI G Q. Advances in photoelectric detection units for imaging based on perovskite materials[J]. Laser Photon Rev, 2022,16(7): 2100713.
[11] [11] WANG G F, LI L, ZHENG H D, et al. Bifunctional strategy toward constructing perovskite/upconversion lab-on-paper photoelectrochemical device for sensitive detection of malathion[J]. ACS Nano, 2023, 17(14):13418–13429.
[12] [12] LI D Y, XU W, ZHOU D L, et al. Cerium-doped perovskite nanocrystals for extremely high-performance deep-ultraviolet photoelectric detection[J]. Adv Opt Mater, 2021, 9(22): 2100423.
[13] [13] ZHANG Q, SU R, DU W N, et al. Advances in small perovskite-based lasers[J]. Small Meth, 2017, 1(9): 1700163.
[14] [14] CAO X H, XING S Y, LAI R C, et al. Low-threshold, external-cavityfree flexible perovskite lasers[J]. Adv Funct Mater, 2023, 33(19):2211841.
[15] [15] JIANG J T, SHAO G Z, ZHANG Z L, et al. Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P–Si–Zn glass for white LEDs[J]. Chem Commun, 2018, 54(87): 12302–12305.
[16] [16] DI X X, HU Z M, JIANG J T, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chem Commun, 2017, 53(80): 11068–11071.
[17] [17] LIU S J, LUO Y K, HE M L, et al. Novel CsPbI3 QDs glass with chemical stability and optical properties[J]. J Eur Ceram Soc, 2018,38(4): 1998–2004.
[18] [18] KOZLOV O V, SINGH R, AI B, et al. Transient spectroscopy of glass-embedded perovskite quantum dots: Novel structures in an old wrapping[J]. Z Für Phys Chem, 2018, 232(9–11): 1495–1511.
[19] [19] LE Y K, HUANG X J, ZHANG H, et al. Transparent glassy composites incorporating lead-free anti-perovskite halide nanocrystals enable tunable emission and ultrastable X-ray imaging[J]. Adv Photon,2023, 5(4): 046002.
[20] [20] CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ Co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21434–21444.
[21] [21] HAN Y H, SUN J Y, YE S, et al. A stimuli responsive material of perovskite quantum dots composited nano-porous glass[J]. J Mater Chem C, 2018, 6(41): 11184–11192.
[22] [22] LIU S J, HE M L, DI X X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass[J]. Ceram Int, 2018, 44(4): 4496–4499.
[23] [23] YUAN R, CHENG Y, LIU S, et al. Multicolour light-emitting diodes based on CsPbX3 (X = Br, I) quantum dots glasses solid materials[J].Mater Lett, 2018, 229: 290–292.
[24] [24] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.
[25] [25] HE M L, DING L, LIU S N, et al. Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxI3–x nanocrystals[J]. J Alloys Compd, 2019, 780: 318–325.
[26] [26] LIU J M, LIU S N, CHEN Y, et al. Sm3+-doped CsPbBr3 NCs glass: A luminescent material for potential use in lighting engineering[J].Ceram Int, 2019, 45(17): 22688–22693.
[27] [27] LIU J M, SHEN L L, CHEN Y, et al. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering[J]. J Mater Chem C, 2019, 7(43):13606–13612.
[28] [28] LIU S, SHAO G, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED[J]. Chem Eng J,2019, 361: 937–944.
[29] [29] SHAO G, LIU S, DING L, et al. KxCs1?xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes. [J].Chem Eng J, 2019, 375: 122031.
[30] [30] SHEN L, ZHANG Z, ZHAO Y, et al. Synthesis and optical properties of novel mixed‐metal cation CsPb1?xTixBr3‐based perovskite glasses for W‐LED[J]. J Am Ceram Soc, 2019, 103(1): 382–290.
[31] [31] PANG X L, ZHANG H R, XIE L Q, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J]. J Mater Chem C, 2019, 7(42): 13139–13148.
[32] [32] PANG X, ZHANG X, LEI B, et al. Precipitating tunable-emission CsPb(Cl/Br)3 QDs in boro-germanate glass for wide-color-gamut liquid crystal displays[J]. J Inf Disp, 2019, 20(4): 193–200.
[33] [33] WENG K B, LONG N B, GUO Y Q, et al. Nanocrystallization of α-CsPbI3 perovskite nanocrystals in GeS2-Sb2S3 based chalcogenide glass[J]. J Eur Ceram Soc, 2020, 40(12): 4148–4152.
[34] [34] LIU Y, CHEN W, ZHONG J S, et al. Upconversion luminescence in Yb/ln (Ln = Er, Tm) doped oxyhalide glasses containing CsPbBr3 perovskite nanocrystals[J]. J Eur Ceram Soc, 2019, 39(14): 4275–4282.
[35] [35] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al.Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem Eng J,2020, 401: 126053.
[36] [36] LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J]. Nanoscale, 2020, 12(12): 6630–6636.
[37] [37] LI X Y, YU Y L, HONG J Q, et al. Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr3 perovskite quantum dots[J]. J Lumin, 2020, 219: 116897.
[38] [38] CHEN D Q, YUAN S, CHEN J K, et al. Robust CsPbX3 (X = Cl, Br,and I) perovskite quantum dot embedded glasses: Nanocrystallization, improved stability and visible full-spectral tunable emissions[J]. J Mater Chem C, 2018, 6(47): 12864–12870.
[39] [39] CHEN S N. Optical properties of CsPbCl3 nanocrystals in phosphate glass[J]. J Mater Sci Mater Electron, 2019, 30(21): 19536–19540.
[40] [40] ZHUANG B, LIU Y, YUAN S, et al. Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing[J]. Nanoscale, 2019, 11(32):15010–15016.
[41] [41] LI P P, XIE W Q, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods:Mechanical and hydration crystallization[J]. J Mater Chem C, 2020,8(2): 473–480.
[42] [42] WANG Y J, ZHANG R L, YUE Y, et al. Room temperature synthesis of CsPbX3 (X= Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass[J]. J Alloys Compd, 2020, 818: 152872.
[43] [43] ZHANG L Q, LIN H, WANG C Y, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: Mechanically-driven CsPbBr3 nanocrystallization in glass[J]. Nanoscale, 2020, 12(16): 8801–8808.
[44] [44] ZHANG X Z, GUO L Z, ZHANG Y H, et al. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics[J]. J Am Ceram Soc, 2020, 103(9): 5028–5035.
[45] [45] YU Y X, SHAO G Z, DING L, et al. Ultra-stable Eu3+-doped CsPbCl2Br1 perovskite quantum dots glass for optical temperature sensing[J]. J Rare Earths, 2021, 39(12): 1497–1505.
[46] [46] WANG C Y, LIN H, XIANG X Q, et al. CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry[J]. J Mater Chem C, 2018, 6(37): 9964–9971.
[47] [47] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): e2102529.
[48] [48] MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021, 8(15): 2003728.
[49] [49] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.
[50] [50] HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J].Nat Photon, 2020, 14: 82–88.
[51] [51] ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals[J]. Adv Opt Mater, 2020,8(18): 2000585.
[52] [52] XUE J P, WANG X F, JEONG J H, et al. Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics[J]. Chem Eng J, 2020, 383: 123082.
[53] [53] XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications[J]. Nano Res, 2019, 12(5): 1049–1054.
[54] [54] FERNANDEZ T T, SAKAKURA M, EATON S M, et al. Bespoke photonic devices using ultrafast laser driven ion migration in glasses[J].Prog Mater Sci, 2018, 94: 68–113.
[55] [55] KAKIUCHIDA H, TAKAHASHI M, TOKUDA Y, et al. Rewritable holographic structures formed in organic–inorganic hybrid materials by photothermal processing[J]. Adv Funct Mater, 2009, 19(16):2569–2576.
[56] [56] KHALID M, USMAN M, ALI NASIR M, et al. Recent advancements in femtosecond laser inscribed waveguides in germanate glass for ~ 2.1μm laser applications[J]. Optik, 2023, 273: 170462.
[57] [57] LONG X W, BAI J. Laser action from a femtosecond laser written Yb: Phosphate glass waveguide[J]. Optik, 2022, 249: 168308.
[58] [58] SHIMOTSUMA Y, SAKAKURA M, KAZANSKY P G, et al.Ultrafast manipulation of self-assembled form birefringence in glass[J].Adv Mater, 2010, 22(36): 4039–4043.
[59] [59] SUN S Z, WANG C, YAN C Y, et al. Femtosecond laser induced amorphization of quantum dots and application in three-dimensional optical data storage[J]. J Am Ceram Soc, 2022, 105(12): 7291–7301.
[60] [60] TAN D, SHARAFUDEEN K N, YUE Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Prog Mater Sci, 2016, 76(3): 154–228.
[61] [61] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nat Photon, 2018, 12: 596–600.
[62] [62] ZHANG B, WANG Z, TAN D Z, et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds[J]. Adv Opt Mater, 2021, 9(8):2001962.
[63] [63] ZHANG F T, XIE X H, ZHAO X J, et al. Polarization-dependent microstructural evolution induced by a femtosecond laser in an aluminosilicate glass[J]. Opt Express, 2021, 29(7): 10265–10274.
[64] [64] CHEN C, YU Y S, YANG R, et al. Monitoring thermal effect in femtosecond laser interaction with glass by fiber Bragg grating[J]. J Light Technol, 2011, 29(14): 2126–2130.
[65] [65] EATON S, ZHANG H B, HERMAN P, et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Opt Express, 2005, 13(12): 4708–4716.
[66] [66] XU T X, SWITKOWSKI K, CHEN X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric Barium calcium titanate[J].Nat Photon, 2018, 12: 591–595.
[67] [67] JIN M, ZHOU W, MA W, et al. The inhibition of CsPbBr3 nanocrystals glass from self-crystallization with the assistance of ZnO modulation for rewritable data storage[J]. Chem Eng J, 2022, 427:129812.
[68] [68] DU Y, WANG X, SHEN D Y, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J]. Chem Eng J, 2020, 401: 126132.
[69] [69] HU Y Z, ZHANG W C, YE Y, et al. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion[J]. ACS Appl Nano Mater, 2020, 3(1): 850–857.
[70] [70] SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: Photoinduced thermal engineering and applications[J]. Adv Opt Mater, 2021, 9(11): 2100094.
[71] [71] MAO W X, HALL C R, BERNARDI S, et al. Light-induced reversal of ion segregation in mixed-halide perovskites[J]. Nat Mater, 2021,20(1): 55–61.
[72] [72] CHEN Z H, BROCKS G, TAO S X, et al. Unified theory for light-induced halide segregation in mixed halide perovskites[J]. Nat Commun, 2021, 12(1): 2687.
[73] [73] ZHAO Y C, MIAO P, ELIA J, et al. Strain-activated light-induced halide segregation in mixed-halide perovskite solids[J]. Nat Commun,2020, 11(1): 6328.
[74] [74] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022,375(6578): 307–310.
[75] [75] SUN K, LI X K, TAN D Z, et al. Pure blue perovskites nanocrystals in glass: Ultrafast laser direct writing and bandgap tuning (laser photonics rev. 17(5)/2023)[J]. Laser Photon Rev, 2023, 17(5): 2370022.
[76] [76] HUANG X J, GUO Q Y, KANG S L, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 2020, 14(3): 3150–3158.
[77] [77] ZHOU N J, BEKENSTEIN Y, EISLER C N, et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy[J]. Sci Adv, 2019, 5(5): eaav8141.
[78] [78] CHEN Q P, HUANG X J, YANG D D, et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting[J]. Adv Opt Mater, 2023,11(10): 2300090.
[79] [79] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Adv Funct Mater, 2021, 31(16): 2010144.
[80] [80] LIU X D, MEI E R, LIU Z Z, et al. Stable, low-threshold amplification spontaneous emission of blue-emitting CsPbCl2Br1 perovskitenanocrystals glasses with controlled crystallization[J]. ACS Photon,2021, 8(3): 887–893.
[81] [81] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nat Photon, 2008, 2: 219–225.
[82] [82] QIU J R, MIURA K, INOUYE H, et al. Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions[J]. Appl Phys Lett, 1998, 73(13): 1763–1765.
[83] [83] QIU J R, GAETA A L, HIRAO K. Long-lasting phosphorescence in oxygen-deficient Ge-doped silica glasses at room temperature[J].Chem Phys Lett, 2001, 333(3–4): 236–241.
[84] [84] JIANG X W, QIU J R, FAN Y Y, et al. Long-lasting phosphorescence and photostimulated long-lasting phosphorescence in Mn2+-doped alumino-phosphofluoride glasses irradiated by a femtosecond laser[J].J Mater Res, 2003, 18(3): 616–619.
[85] [85] PENG Q P, WANG T, TANG H T, et al. Up-converted long persistent luminescence from CsPbBr3 nanocrystals in glass[J]. Laser Photon Rev,2022, 16(12): 2200449.
Get Citation
Copy Citation Text
LE Yakun, HUANG Xiongjian, DONG Guoping. Research Progress in Crystallization and Optical Properties of Perovskite Quantum Dot Glass Regulated by Femtosecond Laser[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2659
Category:
Received: Jan. 26, 2024
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: DONG Guoping (dgp@scut.edu.cn)