Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2659(2024)

Research Progress in Crystallization and Optical Properties of Perovskite Quantum Dot Glass Regulated by Femtosecond Laser

LE Yakun1, HUANG Xiongjian1,2, and DONG Guoping1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(85)

    [1] [1] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX?, X=Cl, Br,and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692–3696.

    [2] [2] SU Y, CHEN X J, JI W Y, et al. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X=Cl, Br, I) perovskite QDs toward the tunability of entire visible light[J]. ACS Appl Mater Interfaces, 2017, 9(38): 33020–33028.

    [3] [3] CHEN H T, GUO A Q, GU X Y, et al. Highly luminescent CsPbX3(X=Cl, Br, I) perovskite nanocrystals with tunable photoluminescence properties[J]. J Alloys Compd, 2019, 789: 392–399.

    [4] [4] DEY A, YE J Z, DE A, et al. State of the art and prospects for halide perovskite nanocrystals[J]. ACS Nano, 2021, 15(7): 10775–10981.

    [5] [5] EFROS A L, BRUS L E. Nanocrystal quantum dots: From discovery to modern development[J]. ACS Nano, 2021, 15(4): 6192–6210.

    [6] [6] LAL N N, DKHISSI Y, LI W, et al. Perovskite tandem solar cells[J].Adv Energy Mater, 2017, 7(18): 1602761.

    [7] [7] HU Y H, SCHLIPF J, WUSSLER M, et al. Hybrid perovskite/perovskite heterojunction solar cells[J]. ACS Nano, 2016, 10(6): 5999–6007.

    [8] [8] HASSAN Y, PARK J H, CRAWFORD M L, et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs[J]. Nature, 2021,591(7848): 72–77.

    [9] [9] LI C H A, KO P K, CHAN C C S, et al. Mixed ruddlesden–popper and dion–jacobson phase perovskites for stable and efficient blue perovskite LEDs[J]. Adv Funct Mater, 2023, 33(41): 2303301.

    [10] [10] WANG D, LI G Q. Advances in photoelectric detection units for imaging based on perovskite materials[J]. Laser Photon Rev, 2022,16(7): 2100713.

    [11] [11] WANG G F, LI L, ZHENG H D, et al. Bifunctional strategy toward constructing perovskite/upconversion lab-on-paper photoelectrochemical device for sensitive detection of malathion[J]. ACS Nano, 2023, 17(14):13418–13429.

    [12] [12] LI D Y, XU W, ZHOU D L, et al. Cerium-doped perovskite nanocrystals for extremely high-performance deep-ultraviolet photoelectric detection[J]. Adv Opt Mater, 2021, 9(22): 2100423.

    [13] [13] ZHANG Q, SU R, DU W N, et al. Advances in small perovskite-based lasers[J]. Small Meth, 2017, 1(9): 1700163.

    [14] [14] CAO X H, XING S Y, LAI R C, et al. Low-threshold, external-cavityfree flexible perovskite lasers[J]. Adv Funct Mater, 2023, 33(19):2211841.

    [15] [15] JIANG J T, SHAO G Z, ZHANG Z L, et al. Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P–Si–Zn glass for white LEDs[J]. Chem Commun, 2018, 54(87): 12302–12305.

    [16] [16] DI X X, HU Z M, JIANG J T, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chem Commun, 2017, 53(80): 11068–11071.

    [17] [17] LIU S J, LUO Y K, HE M L, et al. Novel CsPbI3 QDs glass with chemical stability and optical properties[J]. J Eur Ceram Soc, 2018,38(4): 1998–2004.

    [18] [18] KOZLOV O V, SINGH R, AI B, et al. Transient spectroscopy of glass-embedded perovskite quantum dots: Novel structures in an old wrapping[J]. Z Für Phys Chem, 2018, 232(9–11): 1495–1511.

    [19] [19] LE Y K, HUANG X J, ZHANG H, et al. Transparent glassy composites incorporating lead-free anti-perovskite halide nanocrystals enable tunable emission and ultrastable X-ray imaging[J]. Adv Photon,2023, 5(4): 046002.

    [20] [20] CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ Co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21434–21444.

    [21] [21] HAN Y H, SUN J Y, YE S, et al. A stimuli responsive material of perovskite quantum dots composited nano-porous glass[J]. J Mater Chem C, 2018, 6(41): 11184–11192.

    [22] [22] LIU S J, HE M L, DI X X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X = Br, I) QDs in borosilicate glass[J]. Ceram Int, 2018, 44(4): 4496–4499.

    [23] [23] YUAN R, CHENG Y, LIU S, et al. Multicolour light-emitting diodes based on CsPbX3 (X = Br, I) quantum dots glasses solid materials[J].Mater Lett, 2018, 229: 290–292.

    [24] [24] CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X = Cl, Br, I) perovskite quantum dots through fluorine doping[J]. Nanoscale, 2019, 11(37):17216–17221.

    [25] [25] HE M L, DING L, LIU S N, et al. Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxI3–x nanocrystals[J]. J Alloys Compd, 2019, 780: 318–325.

    [26] [26] LIU J M, LIU S N, CHEN Y, et al. Sm3+-doped CsPbBr3 NCs glass: A luminescent material for potential use in lighting engineering[J].Ceram Int, 2019, 45(17): 22688–22693.

    [27] [27] LIU J M, SHEN L L, CHEN Y, et al. Highly luminescent and ultrastable cesium lead halide perovskite nanocrystal glass for plant-growth lighting engineering[J]. J Mater Chem C, 2019, 7(43):13606–13612.

    [28] [28] LIU S, SHAO G, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED[J]. Chem Eng J,2019, 361: 937–944.

    [29] [29] SHAO G, LIU S, DING L, et al. KxCs1?xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes. [J].Chem Eng J, 2019, 375: 122031.

    [30] [30] SHEN L, ZHANG Z, ZHAO Y, et al. Synthesis and optical properties of novel mixed‐metal cation CsPb1?xTixBr3‐based perovskite glasses for W‐LED[J]. J Am Ceram Soc, 2019, 103(1): 382–290.

    [31] [31] PANG X L, ZHANG H R, XIE L Q, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays[J]. J Mater Chem C, 2019, 7(42): 13139–13148.

    [32] [32] PANG X, ZHANG X, LEI B, et al. Precipitating tunable-emission CsPb(Cl/Br)3 QDs in boro-germanate glass for wide-color-gamut liquid crystal displays[J]. J Inf Disp, 2019, 20(4): 193–200.

    [33] [33] WENG K B, LONG N B, GUO Y Q, et al. Nanocrystallization of α-CsPbI3 perovskite nanocrystals in GeS2-Sb2S3 based chalcogenide glass[J]. J Eur Ceram Soc, 2020, 40(12): 4148–4152.

    [34] [34] LIU Y, CHEN W, ZHONG J S, et al. Upconversion luminescence in Yb/ln (Ln = Er, Tm) doped oxyhalide glasses containing CsPbBr3 perovskite nanocrystals[J]. J Eur Ceram Soc, 2019, 39(14): 4275–4282.

    [35] [35] EROL E, K?BR?SL? O, ?ELIKBILEK ERSUNDU M, et al.Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem Eng J,2020, 401: 126053.

    [36] [36] LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs[J]. Nanoscale, 2020, 12(12): 6630–6636.

    [37] [37] LI X Y, YU Y L, HONG J Q, et al. Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr3 perovskite quantum dots[J]. J Lumin, 2020, 219: 116897.

    [38] [38] CHEN D Q, YUAN S, CHEN J K, et al. Robust CsPbX3 (X = Cl, Br,and I) perovskite quantum dot embedded glasses: Nanocrystallization, improved stability and visible full-spectral tunable emissions[J]. J Mater Chem C, 2018, 6(47): 12864–12870.

    [39] [39] CHEN S N. Optical properties of CsPbCl3 nanocrystals in phosphate glass[J]. J Mater Sci Mater Electron, 2019, 30(21): 19536–19540.

    [40] [40] ZHUANG B, LIU Y, YUAN S, et al. Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing[J]. Nanoscale, 2019, 11(32):15010–15016.

    [41] [41] LI P P, XIE W Q, MAO W, et al. Luminescence enhancement of CsPbBr3 quantum dot glasses induced by two unexpected methods:Mechanical and hydration crystallization[J]. J Mater Chem C, 2020,8(2): 473–480.

    [42] [42] WANG Y J, ZHANG R L, YUE Y, et al. Room temperature synthesis of CsPbX3 (X= Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass[J]. J Alloys Compd, 2020, 818: 152872.

    [43] [43] ZHANG L Q, LIN H, WANG C Y, et al. A solid-state colorimetric fluorescence Pb2+-sensing scheme: Mechanically-driven CsPbBr3 nanocrystallization in glass[J]. Nanoscale, 2020, 12(16): 8801–8808.

    [44] [44] ZHANG X Z, GUO L Z, ZHANG Y H, et al. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics[J]. J Am Ceram Soc, 2020, 103(9): 5028–5035.

    [45] [45] YU Y X, SHAO G Z, DING L, et al. Ultra-stable Eu3+-doped CsPbCl2Br1 perovskite quantum dots glass for optical temperature sensing[J]. J Rare Earths, 2021, 39(12): 1497–1505.

    [46] [46] WANG C Y, LIN H, XIANG X Q, et al. CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry[J]. J Mater Chem C, 2018, 6(37): 9964–9971.

    [47] [47] ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Adv Mater, 2021, 33(40): e2102529.

    [48] [48] MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021, 8(15): 2003728.

    [49] [49] YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J].ACS Appl Mater Interfaces, 2018, 10(22): 18918–18926.

    [50] [50] HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J].Nat Photon, 2020, 14: 82–88.

    [51] [51] ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals[J]. Adv Opt Mater, 2020,8(18): 2000585.

    [52] [52] XUE J P, WANG X F, JEONG J H, et al. Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics[J]. Chem Eng J, 2020, 383: 123082.

    [53] [53] XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications[J]. Nano Res, 2019, 12(5): 1049–1054.

    [54] [54] FERNANDEZ T T, SAKAKURA M, EATON S M, et al. Bespoke photonic devices using ultrafast laser driven ion migration in glasses[J].Prog Mater Sci, 2018, 94: 68–113.

    [55] [55] KAKIUCHIDA H, TAKAHASHI M, TOKUDA Y, et al. Rewritable holographic structures formed in organic–inorganic hybrid materials by photothermal processing[J]. Adv Funct Mater, 2009, 19(16):2569–2576.

    [56] [56] KHALID M, USMAN M, ALI NASIR M, et al. Recent advancements in femtosecond laser inscribed waveguides in germanate glass for ~ 2.1μm laser applications[J]. Optik, 2023, 273: 170462.

    [57] [57] LONG X W, BAI J. Laser action from a femtosecond laser written Yb: Phosphate glass waveguide[J]. Optik, 2022, 249: 168308.

    [58] [58] SHIMOTSUMA Y, SAKAKURA M, KAZANSKY P G, et al.Ultrafast manipulation of self-assembled form birefringence in glass[J].Adv Mater, 2010, 22(36): 4039–4043.

    [59] [59] SUN S Z, WANG C, YAN C Y, et al. Femtosecond laser induced amorphization of quantum dots and application in three-dimensional optical data storage[J]. J Am Ceram Soc, 2022, 105(12): 7291–7301.

    [60] [60] TAN D, SHARAFUDEEN K N, YUE Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Prog Mater Sci, 2016, 76(3): 154–228.

    [61] [61] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nat Photon, 2018, 12: 596–600.

    [62] [62] ZHANG B, WANG Z, TAN D Z, et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds[J]. Adv Opt Mater, 2021, 9(8):2001962.

    [63] [63] ZHANG F T, XIE X H, ZHAO X J, et al. Polarization-dependent microstructural evolution induced by a femtosecond laser in an aluminosilicate glass[J]. Opt Express, 2021, 29(7): 10265–10274.

    [64] [64] CHEN C, YU Y S, YANG R, et al. Monitoring thermal effect in femtosecond laser interaction with glass by fiber Bragg grating[J]. J Light Technol, 2011, 29(14): 2126–2130.

    [65] [65] EATON S, ZHANG H B, HERMAN P, et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Opt Express, 2005, 13(12): 4708–4716.

    [66] [66] XU T X, SWITKOWSKI K, CHEN X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric Barium calcium titanate[J].Nat Photon, 2018, 12: 591–595.

    [67] [67] JIN M, ZHOU W, MA W, et al. The inhibition of CsPbBr3 nanocrystals glass from self-crystallization with the assistance of ZnO modulation for rewritable data storage[J]. Chem Eng J, 2022, 427:129812.

    [68] [68] DU Y, WANG X, SHEN D Y, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers[J]. Chem Eng J, 2020, 401: 126132.

    [69] [69] HU Y Z, ZHANG W C, YE Y, et al. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion[J]. ACS Appl Nano Mater, 2020, 3(1): 850–857.

    [70] [70] SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: Photoinduced thermal engineering and applications[J]. Adv Opt Mater, 2021, 9(11): 2100094.

    [71] [71] MAO W X, HALL C R, BERNARDI S, et al. Light-induced reversal of ion segregation in mixed-halide perovskites[J]. Nat Mater, 2021,20(1): 55–61.

    [72] [72] CHEN Z H, BROCKS G, TAO S X, et al. Unified theory for light-induced halide segregation in mixed halide perovskites[J]. Nat Commun, 2021, 12(1): 2687.

    [73] [73] ZHAO Y C, MIAO P, ELIA J, et al. Strain-activated light-induced halide segregation in mixed-halide perovskite solids[J]. Nat Commun,2020, 11(1): 6328.

    [74] [74] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022,375(6578): 307–310.

    [75] [75] SUN K, LI X K, TAN D Z, et al. Pure blue perovskites nanocrystals in glass: Ultrafast laser direct writing and bandgap tuning (laser photonics rev. 17(5)/2023)[J]. Laser Photon Rev, 2023, 17(5): 2370022.

    [76] [76] HUANG X J, GUO Q Y, KANG S L, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 2020, 14(3): 3150–3158.

    [77] [77] ZHOU N J, BEKENSTEIN Y, EISLER C N, et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy[J]. Sci Adv, 2019, 5(5): eaav8141.

    [78] [78] CHEN Q P, HUANG X J, YANG D D, et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting[J]. Adv Opt Mater, 2023,11(10): 2300090.

    [79] [79] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Adv Funct Mater, 2021, 31(16): 2010144.

    [80] [80] LIU X D, MEI E R, LIU Z Z, et al. Stable, low-threshold amplification spontaneous emission of blue-emitting CsPbCl2Br1 perovskitenanocrystals glasses with controlled crystallization[J]. ACS Photon,2021, 8(3): 887–893.

    [81] [81] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nat Photon, 2008, 2: 219–225.

    [82] [82] QIU J R, MIURA K, INOUYE H, et al. Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions[J]. Appl Phys Lett, 1998, 73(13): 1763–1765.

    [83] [83] QIU J R, GAETA A L, HIRAO K. Long-lasting phosphorescence in oxygen-deficient Ge-doped silica glasses at room temperature[J].Chem Phys Lett, 2001, 333(3–4): 236–241.

    [84] [84] JIANG X W, QIU J R, FAN Y Y, et al. Long-lasting phosphorescence and photostimulated long-lasting phosphorescence in Mn2+-doped alumino-phosphofluoride glasses irradiated by a femtosecond laser[J].J Mater Res, 2003, 18(3): 616–619.

    [85] [85] PENG Q P, WANG T, TANG H T, et al. Up-converted long persistent luminescence from CsPbBr3 nanocrystals in glass[J]. Laser Photon Rev,2022, 16(12): 2200449.

    Tools

    Get Citation

    Copy Citation Text

    LE Yakun, HUANG Xiongjian, DONG Guoping. Research Progress in Crystallization and Optical Properties of Perovskite Quantum Dot Glass Regulated by Femtosecond Laser[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2659

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 26, 2024

    Accepted: --

    Published Online: Dec. 4, 2024

    The Author Email: DONG Guoping (dgp@scut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240077

    Topics