Chinese Journal of Lasers, Volume. 47, Issue 4, 412001(2020)
Fluctuation Analysis of Key Distribution Protocol Based on Heralded Single-Photon Source and Orbital Angular Momentum
[1] Bennett C H, Brassard G. An update on quantum cryptography[M]. ∥Blakley G R, Chaum D. Advances in cryptology. Lecture notes in computer science. Berlin, Heidelberg: Springer, 196, 475-480(1985).
[2] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 85, 441-444(2000).
[3] Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 48, 351-406(2001).
[4] Gottesman D, Lo H K, Lutkenhaus N et al. Security of quantum key distribution with imperfect devices[J]. Quantum Information and Computation, 4, 325-360(2004).
[5] Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New Journal of Physics, 11, 065003(2009).
[6] Zhao Y. Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 78, 042333(2008).
[7] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information and Computation, 8, 622-635(2007).
[9] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).
[11] Dong C, Zhao S H, Zhao W H et al. Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 63, 030302(2014).
[13] Zhang Y C, Yu S, Gu W Y. Squeezed-state measurement-device-independent quantum key distribution[J]. Scientific Reports, 8, 4115(2018).
[14] Fasel S, Alibart O, Tanzili S et al. High quality asynchronous heralded single photon source at telecom wavelength[J]. New Journal of Physics, 6, 628-629(2004).
[18] Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 85, 042307(2012).
[21] Su Z K, Wang F Q, Lu Y Q et al. Study on quantum cryptography using orbital angular momentum states of photons[J]. Acta Physica Sinica, 57, 3016-3021(2008).
[22] Yan L, Sun H, Zhao S M. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum[J]. Journal of Signal Processing, 30, 1275-1278(2014).
[27] Ma X F. Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution[J]. Physical Review A, 86, 052305(2012).
[28] Sun S H, Gao M, Li C Y et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 87, 052329(2013).
[29] Zhou X Y, Zhang C H, Guo G C et al. The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources[J]. Quantum Information Processing, 15, 2455-2464(2016).
[31] Curtis J E, Grier D G. Modulated optical vortices[J]. Optics Letters, 28, 872-874(2003).
[33] Wang Q, Wang X B. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources[J]. Physical Reviews A, 88, 052332(2013).
Get Citation
Copy Citation Text
He Yefeng, Guo Jiarui, Li Chunyu, Zhao Yankun. Fluctuation Analysis of Key Distribution Protocol Based on Heralded Single-Photon Source and Orbital Angular Momentum[J]. Chinese Journal of Lasers, 2020, 47(4): 412001
Category: quantum optics
Received: Oct. 24, 2019
Accepted: --
Published Online: Apr. 9, 2020
The Author Email: Jiarui Guo (1271745041@qq.com)