Journal of Inorganic Materials, Volume. 39, Issue 5, 485(2024)

ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors

Endong YANG1, Baole LI2, Ke ZHANG2, Lu TAN2, and Yongbing LOU2、*
Author Affiliations
  • 11. Nantong Jianghai Energy Storage Technology Co., Ltd., Nantong 226000, China
  • 22. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
  • show less
    References(39)

    [1] LI M, WANG J, WANG F et al. Construction of internal and external defect electrode materials based on hollow manganese-cobalt- nickel sulfide nanotube arrays[J]. Appl. Surf. Sci., 150900(2021).

    [2] LIU L, TIAN Q, YAO W et al. All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics[J]. J. Power Sources, 59(2018).

    [3] CHEN J, LIU B, CAI H et al. Covalently interlayer-confined organic-inorganic heterostructures for aqueous potassium ion supercapacitors[J]. Small, 2370022(2023).

    [4] MOHANTY A, JAIHINDH D, FU Y P et al. An extensive review on three dimension architectural metal-organic frameworks towards supercapacitor application[J]. J. Power Sources, 229444(2021).

    [5] JAVED M S, DAI S, WANG M et al. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors[J]. Nanoscale, 13610(2015).

    [6] LI X, SUN J, FENG L et al. Cactus-like ZnS/Ni3S2 hybrid with high electrochemical performance for supercapacitors[J]. J. Alloys Compd., 508(2018).

    [7] TABRIZI A G, ARSALANI N, NAGHSHBANDI Z et al. Growth of polyaniline on rGO-Co3S4 nanocomposite for high-performance supercapacitor energy storage[J]. Int. J. Hydrogen Energy, 12200(2018).

    [8] AHMAD R, IQBAL N, NOOR T. Development of ZIF-derived nanoporous carbon and cobalt sulfide-based electrode material for supercapacitor[J]. Materials, 2940(2019).

    [9] YANG Z, MA Q, HAN L et al. Design of Mo-doped cobalt sulfide hollow nanocages from zeolitic imidazolate frameworks as advanced electrodes for supercapacitors[J]. Inorg. Chem. Front., 2178(2019).

    [10] JIANG Z, LU W, LI Z et al. Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors[J]. J. Mater. Chem. A, 8603(2014).

    [11] WU X, HAN X, MA X et al. Morphology-controllable synthesis of Zn-Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis[J]. ACS Appl. Mater. Interfaces, 12574(2017).

    [12] SAMUEL E, JOSHI B, KIM M W et al. Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting[J]. Nano Energy, 104648(2020).

    [13] LIN J, LIU Y, WANG Y et al. Rational construction of nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer as the battery-like electrode for supercapacitors[J]. J. Power Sources, 64(2017).

    [14] YIN X, LI H, YUAN R et al. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high- performance supercapacitor[J]. J. Mater. Sci. Technol., 60(2021).

    [15] GAO R, ZHANG Q, SOYEKWO F et al. Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties[J]. Electrochim. Acta, 94(2017).

    [16] KALE S B, BHARDWAJ A, LOKHANDE V C et al. Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: meeting the fundamental requirements of an electrocatalyst[J]. Chem. Eng. J., 126993(2021).

    [17] XU Z, DU C, YANG H et al. NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chem. Eng. J., 127871(2021).

    [18] LIU Z, ZHANG Z, LI Z et al. 3D hierarchical iron-cobalt sulfide anchored on carbon fiber with abundant active short chain sulfur for high-efficiency capture of elemental mercury[J]. Chem. Eng. J., 129442(2021).

    [19] QIN J F, XIE J Y, WANG N et al. Surface construction of loose Co(OH)2 shell derived from ZIF-67 nanocube for efficient oxygen evolution[J]. J. Colloid Interface Sci., 279(2020).

    [20] ZHANG Q, LIU Z, ZHAO B et al. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors[J]. Energy Storage Mater., 632(2019).

    [21] LI W, ZHANG B, LIN R et al. A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes[J]. Adv. Funct. Mater., 1705937(2018).

    [23] PURKAIT T, SINGH G, KUMAR D et al. High-performance flexible supercapacitors based on electrochemically tailored three- dimensional reduced graphene oxide networks[J]. Sci. Rep., 640(2018).

    [24] MEI B A, LAU J, LIN T et al. Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage[J]. J. Phys. Chem. C, 24499(2018).

    [25] KIM W J, CHO S, HONG J et al. Hierarchically nanostructured 1D-2D flowerlike copper sulfide electrode for high-performance supercapacitor application by one-pot synthetic procedure[J]. Appl. Surf. Sci., 152086(2022).

    [26] MEI B A, MUNTESHARI O, LAU J et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices[J]. J. Phys. Chem. C, 194(2018).

    [27] GU H, ZENG Y, WAN S et al. A well-controlled three-dimensional tree-like core-shell structured electrode for flexible all-solid-state supercapacitors with favorable mechanical and electrochemical durability[J]. J. Mater. Chem. A, 16099(2021).

    [28] HU N, HUANG L, GONG W et al. High-performance asymmetric supercapacitor based on hierarchical NiMn2O4@CoS core-shell microspheres and stereotaxically constricted graphene[J]. ACS Sustainable Chem. Eng., 16933(2018).

    [29] LIU G, WANG B, LIU T et al. 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors[J]. J. Mater. Chem. A, 1822(2018).

    [30] KANG L, ZHANG M, ZHANG J et al. Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors[J]. J. Mater. Chem. A, 24053(2020).

    [31] LIU S, KANG L, HU J et al. Realizing superior redox kinetics of hollow bimetallic sulfide nanoarchitectures by defect-induced manipulation toward flexible solid-state supercapacitors[J]. Small, 2104507(2022).

    [33] IQBAL M Z, KHAN J, AFZAL A M et al. Exploring the synergetic electrochemical performance of cobalt sulfide/cobalt phosphate composites for supercapattery devices with high-energy and rate capability[J]. Electrochim. Acta, 138358(2021).

    [34] SHI J, LI X, HE G et al. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. J. Mater. Chem. A, 20619(2015).

    [35] LU Y, YANG W, LI W et al. Room-temperature sulfurization for obtaining Co3O4/CoS core-shell nanosheets as supercapacitor electrodes[J]. J Alloys Compd., 152877(2020).

    [37] PENG S, LI L, WU H B et al. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors[J]. Adv. Energy Mater., 1401172(2015).

    [38] SHEN L, WANG J, XU G et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J]. Adv. Energy Mater., 1400977(2015).

    [39] FANG Y, CHEN X, YIN C et al. Boosting the capacitive property of cobalt sulfide through interface engineering for high-performance supercapacitors[J]. Ceram Int., 24973(2021).

    Tools

    Get Citation

    Copy Citation Text

    Endong YANG, Baole LI, Ke ZHANG, Lu TAN, Yongbing LOU. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 18, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: Yongbing LOU (lou@seu.edu.cn)

    DOI:10.15541/jim20230481

    Topics