Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 9, 1356(2025)

Urban road defect detection algorithm based on improved YOLOv8n

Shisong ZHU1, Hong GAO1, Bibo LU1、*, and Haijing DU2
Author Affiliations
  • 1School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, China
  • 2Xiuwu County Forestry Development Service Center, Jiaozuo 454350, China
  • show less
    Figures & Tables(14)
    Network structure of YOLOv8-road
    Multi-level perception attention
    Multi-head self-attention
    C2f_D network architecture
    DWR_Conv network architecture
    Data augmentation
    Training process
    Detection results before and after algorithm improvement. (a) Transverse crack; (b) Longitudinal crack; (c) Repairment.
    Grad-CAM visualization results before and after algorithm improvement. (a) Small-scale defects; (b) Damages under complex background; (c) Multi-scale defects.
    Comparison of experimental results. (a) Multiple transverse cracks; (b) Repairment; (c) Multiple types of cracks.
    • Table 1. Experimental results of different attention mechanisms

      View table
      View in Article

      Table 1. Experimental results of different attention mechanisms

      YOLOv8nParameters/MGFLOPsPrecision/%ReCall/%mAP50/%mAP(50~95)/%
      +ECA3.0068.191.290.093.868.7
      +SimAM3.0068.193.389.493.868.6
      +LSKA3.0778.195.389.194.569.0
      +CAA3.2078.494.189.994.770.0
      +MLPA(Ours)3.2218.395.991.296.471.4
    • Table 2. Experimental results of different loss functions

      View table
      View in Article

      Table 2. Experimental results of different loss functions

      YOLOv8nParameters/MGFLOPsPrecision/%ReCall/%mAP50/%mAP(50~95)/%
      +Focal_DIoU3.0068.192.889.794.669.4
      +EIoU3.0068.193.190.193.568.7
      +MPDIoU3.0068.193.290.294.168.6
      +PIoU3.0068.194.289.894.670.5
      +WIoU(Ours)3.0068.194.689.995.370.5
    • Table 3. Ablation study results

      View table
      View in Article

      Table 3. Ablation study results

      MethodMLPAC2f_DWIoUPrecision/%ReCall/%Parameters/MGFLOPsmAP50/%mAP(50~95)/%
      YOLOv8n93.291.33.0068.194.370.5
      A95.991.23.2218.396.471.4
      B95.092.03.2038.596.874.9
      C94.689.93.0068.195.370.5
      D96.094.33.4178.798.277.8
      E94.693.33.2218.396.972.6
      F94.591.03.2038.597.675.7
      G96.896.03.4178.798.578.1
    • Table 4. Comparison of experimental results for different algorithms

      View table
      View in Article

      Table 4. Comparison of experimental results for different algorithms

      MethodsParameters/MGFLOPsmAP50/%mAP(50~95)/%
      YOLOv7n37.21105.196.283.1
      YOLOv7-tiny6.2013.294.069.2
      YOLOv7x70.83188.996.881.4
      YOLOv9-t60.80266.195.573.7
      YOLOv10n2.708.293.067.8
      YOLOv10s8.0424.594.471.9
      YOLOv11n2.586.394.268.3
      FastestDet0.241.771.441.6
      Road-YOLOv53.858.395.476.8
      Road-EfficientDet6.586.093.053.6
      YOLOv8-road3.428.798.578.1
    Tools

    Get Citation

    Copy Citation Text

    Shisong ZHU, Hong GAO, Bibo LU, Haijing DU. Urban road defect detection algorithm based on improved YOLOv8n[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(9): 1356

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 15, 2025

    Accepted: --

    Published Online: Sep. 25, 2025

    The Author Email: Bibo LU (lubibo@hpu.edu.cn)

    DOI:10.37188/CJLCD.2025-0101

    Topics