Chinese Journal of Lasers, Volume. 51, Issue 19, 1901004(2024)
High‐Power and High‐Efficiency Mid‐Infrared Er‐Doped Fluoride Fiber Lasers (Invited)
[5] Krier A, Sherstnev V V, Krier A et al. A novel LED module for the detection of H2S at 3.8 µm[J]. Journal of Physics D: Applied Physics, 33, 1656-1661(2000).
[19] Wang S Y, Chen J S, Zhao X S et al. Research progress in 3‒5 μm rare earth ion doped mid-infrared fiber lasers (invited)[J]. Infrared and Laser Engineering, 52, 20230215(2023).
[41] Zhang J X, Wang R, Fu S J et al. Erbium-doped ZBLAN fiber laser pumped at 1.7 µm for emission at 2.8 µm[J]. Optics Letters, 47, 3684-3687(2022).
[43] Shi J C, Luo H Y, Chen J S et al. Room-temperature 10 watts level high efficiency Er-doped fluoride fiber laser at 2.8 μm[J]. Chinese Journal of Lasers, 51, 0916001(2024).
[54] Zhang J X, Fu S J, Sheng Q et al. High-efficiency, low-threshold mid-infrared Er-doped fiber lasers based on optimized pump wavelength in 1.6-1.7 μm[J]. Proceedings of SPIE, 12865, 128650X(2024).
[56] Zhang L, Zhang J X, Sheng Q et al. High-efficiency thulium-doped fiber laser at 1.7 μm[J]. Optics & Laser Technology, 152, 108180(2022).
[57] Ma R, Quan X, Zhao T et al. Robust 1.69 μm random fiber laser with high spectral purity based on ordinary fibers[J]. Journal of Lightwave Technology, 40, 3942-3946(2022).
[58] Zhang J X, Fu S J, Sheng Q et al. Recent progress on power scaling and single-frequency operation of 1.7-μm thulium-doped fiber lasers[J]. Optics & Laser Technology, 158, 108882(2023).
[59] Többen H. Room temperature cw fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters, 28, 1361-1362(1992).
[65] Wang C C, Luo H Y, Yang J et al. Watt-level ~3.5 μm Er3+-doped ZrF4 fiber laser using dual-wavelength pumping at 655 and 1981 nm[J]. IEEE Photonics Technology Letters, 33, 784-787(2021).
[68] Xiao X S, Chen Y W, He W T et al. 10-watts-level mid-infrared all-fiber laser at 3.5 μm[J]. Chinese Journal of Lasers, 51, 0516001(2024).
[69] Maes F, Fortin V, Bernier M et al. Quenching of 3.4 μm dual-wavelength pumped erbium doped fiber lasers[J]. IEEE Journal of Quantum Electronics, 53, 1600208(2017).
[75] Zhang L, Fu S J, Sheng Q et al. Widely tunable single-frequency Er-doped ZBLAN fiber laser with emission from 3.37 to 3.72 µm[J]. Optics Letters, 48, 6200-6203(2023).
[76] Zhang L, Fu S J, Sheng Q et al. Gain-switched Er-doped fluoride fiber laser at ~3.75 μm[J]. Photonics, 11, 449(2024).
[77] Falconi M C, Loconsole A M, Annunziato A et al. Design of a broadband erbium-doped fluoroindate fiber laser emitting up to 3.91 μm[J]. Journal of Lightwave Technology, 41, 6065-6072(2023).
[82] Koltashev V V, Frolov M P, Leonov S O et al. Characteristics of a CW ∼5 μm Ce3+-doped chalcogenide glass fiber laser[J]. Laser Physics Letters, 20, 095801(2023).
[84] Muraviev S V, Dorofeev V V, Motorin S E et al. Lasing at 2.72 µm in an Er3+-doped high-purity tungsten-tellurite glass fiber laser[J]. Optics Letters, 47, 5821-5824(2022).
[85] Muraviev S V, Dorofeev V V, Kuznechikov P A et al. 2.8 μm Er3+-doped zinc-tellurite fiber lasers pumped by 976 nm laser diode[J]. IEEE Photonics Technology Letters, 35, 1435-1438(2023).
[86] Liu T, Li Y W, Dai S X et al. Research progress on fabrication and application of mid-infrared glass fiber gratings[J]. Laser & Optoelectronics Progress, 59, 1516015(2022).
[87] Chen L, Fu C L, Cai Z H et al. High-quality fiber Bragg grating inscribed in ZBLAN fiber using femtosecond laser point-by-point technology[J]. Optics Letters, 47, 3435-3438(2022).
[90] Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 39, 2052-2055(2014).
[91] Wang Y P, Li Z L, Liu S et al. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology[J]. Journal of Lightwave Technology, 37, 2185-2193(2019).
[94] She L, Xu N N, Wang P F et al. Direct femtosecond laser inscription of high-order Bragg gratings in fluoroaluminate glass fiber[J]. IEEE Photonics Journal, 14, 5119105(2022).
[95] Schäfer C A, Uehara H, Konishi D et al. Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm[J]. Optics Letters, 43, 2340-2343(2018).
[96] Magnan-Saucier S, Duval S, Matte-Breton C et al. Fuseless side-pump combiner for efficient fluoride-based double-clad fiber pumping[J]. Optics Letters, 45, 5828-5831(2020).
[97] Tang Y T, Luo X, Dong F L et al. All-fiber mid-infrared enhanced supercontinuum generation in an erbium-doped ZBLAN fiber amplifier[J]. Journal of Lightwave Technology, 41, 2855-2861(2023).
[98] Luo X, Tang Y T, Dong F L et al. All-fiber 3.4-W 2.8-µm ultra-short pulse MOPA system seeded by the soliton self-frequency shift of 2-µm pulses[J]. Optics Letters, 48, 1790-1793(2023).
Get Citation
Copy Citation Text
Wei Shi, Lu Zhang, Shijie Fu, Quan Sheng, Junxiang Zhang, Jianquan Yao. High‐Power and High‐Efficiency Mid‐Infrared Er‐Doped Fluoride Fiber Lasers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901004
Category: laser devices and laser physics
Received: Jun. 17, 2024
Accepted: Aug. 2, 2024
Published Online: Oct. 11, 2024
The Author Email: Shi Wei (shiwei@tju.edu.cn)
CSTR:32183.14.CJL240970