Chinese Journal of Lasers, Volume. 48, Issue 5, 0501004(2021)
Research Progress on Eye-Safe All-Solid-State Single-Frequency Lasers
[5] Gibert F, Edouart D, Cénac C et al. 2-μm high-power multiple-frequency single-mode Q-switched Ho∶YLF laser for DIAL application[J]. Applied Physics B, 116, 967-976(2014).
[7] Marron J C, Kendrick R L, Thurman S T et al. Extended-range digital holographic imaging[J]. Proceedings of SPIE, 7684, 76841J(2010).
[9] Li Y J, Feng J X, Li P et al. 400 mW low noise continuous-wave single-frequencyEr, Yb∶YAl3(BO3)4 laser at 1.55 μm[J]. Optics Express, 21, 6082-6090(2013).
[10] Huang J H, Chen Y J, Lin Y F et al. 940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er∶Yb microchip lasers[J]. Optics Letters, 43, 1643-1646(2018).
[11] Kornev A F, Sobolev S S, Terekhov S S. Single-frequency microchip Nd∶YAG laser for injection seeding[C]. //2018 International Conference Laser Optics (ICLO), June 4-8, 2018, St. Petersburg, Russia., 40(2018).
[12] Zhang G W. Tunable lasers[M](2002).
[13] Chang N W H, Hosken D J, Munch J et al. Stable, single frequency Er∶YAG lasers at 1.6 μm[J]. IEEE Journal of Quantum Electronics, 46, 1039-1042(2010).
[20] Deng Y, Yao B Q, Ju Y L et al. A diode-pumped 1617 nm single longitudinal mode Er∶YAG laser with intra-cavity etalons[J]. Chinese Physics Letters, 31, 074202(2014).
[21] Dai T, Wu J, Zhang Z et al. Diode-end-pumped single-longitudinal-mode Er∶LuAG laser with intracavity etalons at 1.6 μm[J]. Applied Optics, 54, 9500-9503(2015).
[24] Kim J W, Sahu J K, Clarkson W A. Efficient single-axial-mode operation of an Er∶YAG ring laser at 1645 nm[C]. //2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, May 4-9, 2008, San Jose, CA, USA., 1-2(2008).
[33] Zheng Y, Gao C Q, Wang R et al. Single frequency 1645 nm Er∶YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode[J]. Optics Letters, 38, 784-786(2013).
[38] Yao B Q, Dai T Y, Duan X M et al. Tunable single-longitudinal-mode Er∶YAG laser using a twisted-mode technique at 1.6 μm[J]. Laser Physics Letters, 12, 025004(2015).
[39] Klotzkin D J. Introduction to semiconductor lasers for optical communications[M]. 2 rd ed. New York: Springer(2014).
[40] Hannon S M. Wind resource assessment using long range pulsed Doppler lidar[C]. //15th Coherent Laser Radar Conference, June 22-26, 2009, Toulouse, France.[S.l.]:[s.n.], 59-62(2009).
[41] Weldon V, Phelan P, Hegarty J. Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm[J]. Electronics Letters, 29, 560-561(1993).
[45] Stoneman R C, Hartman R. Malm A I R, et al. Coherent laser radar using eyesafe YAG laser transmitters[J]. Proceedings of SPIE, 5791, 167-174(2005).
[47] Wang R, Ye Q, Zheng Y et al. Single-frequency operation of a resonantly pumped 1.645 μm Er∶YAG Q-switched laser[J]. Proceedings of SPIE, 8959, 89590F(2014).
[48] Yu J R, Singh U N, Barnes N P et al. 125-mJ diode-pumped injection-seeded Ho∶Tm laser[J]. Optics Letters, 23, 780-782(1998).
[49] Meissner A, Kucirek P, Li J et al. Simulations and experiments on resonantly pumped single-frequency erbium lasers at 1.6 μm[J]. Proceedings of SPIE, 8599, 85990H(2013).
[50] Bai Y X, Yu J R, Wong T H et al. Single-mode, high repetition rate, compact Ho∶YLF laser for space-borne lidar applications[C]. //2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications, June 8-13, 2014, San Jose, CA, USA., 1-2(2014).
[51] Na Q X, Gao C Q, Wang Q et al. 1 kHz single-frequency 2.09 μm Ho∶YAG ring laser[J]. Applied Optics, 56, 7075-7078(2017).
[54] Zhang Y X, Gao C Q, Wang Q et al. High-repetition-rate single-frequency Ho∶YAG MOPA system[J]. Applied Optics, 57, 4222-4227(2018).
[55] Shi Y, Gao C Q, Wang S et al. High-energy, single-frequency, Q-switched Er∶YAG laser with a double-crystals-end-pumping architecture[J]. Optics Express, 27, 2671-2680(2019).
[57] Zhang Y X, Gao C Q, Wang Q et al. 2 kHz single-frequency, injection-seeded Q-switched laser with a ‘double-reflection’ architecture[J]. Laser Physics Letters, 16, 115002(2019).
[62] Dai T Y, Ju Y L, Yao B Q et al. Single-frequency, Q-switched Ho∶YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho∶YAG laser[J]. Optics Letters, 37, 1850-1852(2012).
[63] Dai T Y, Ju Y L, Duan X M et al. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho∶YAlO3 laser at 2118 nm[J]. Applied Physics B, 111, 89-92(2013).
[65] Ye Q, Gao C Q, Wang S et al. Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er∶YAG ceramic laser at 1645 nm[J]. Applied Physics B, 122, 198(2016).
[66] Zhang Y X, Gao C Q, Wang Q et al. Single-frequency, injection-seeded Q-switched Ho∶YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD[J]. Optics Express, 24, 27805-27811(2016).
[67] Wang Q, Gao C, Na Q et al. Single-frequency injection-seeded Q-switched Ho∶YAG laser[J]. Applied Physics Express, 10, 042701(2017).
[68] Dai T Y, Wang Y P, Wu X S et al. An injection-seeded Q-switched Ho∶YLF laser by a tunable single-longitudinal-mode Tm, Ho∶YLF laser at 2050.96 nm[J]. Optics & Laser Technology, 106, 7-11(2018).
[69] Gao C Q, Shi Y, Ye Q et al. 10 mJ single-frequency, injection-seeded Q-switched Er∶YAG laser pumped by a 1470 nm fiber-coupled LD[J]. Laser Physics Letters, 15, 025003(2018).
[70] Wang S, Gao C Q, Shi Y et al. 1645-nm single-frequency, injection-seeded Q-switched Er∶YAG master oscillator and power amplifier[J]. Optical Engineering, 57, 026120(2018).
[71] Gibert F, Edouart D, Cénac C et al. 2-μm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere[J]. Optics Letters, 40, 3093-3096(2015).
[74] Burns P M, Chen M R, Pachowicz D et al. Single frequency Er∶YAG methane/water vapor DIAL source[C]. //Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), Orlando, Florida. Washington, D.C.: OSA, SW3H, 2(2018).
[75] Chen C Y, Chen C Y, Wang Q et al. Single-frequency Q-switched Er∶YAG laser with high frequency and energy stability via the Pound-Drever-Hall locking method[J]. Optics Letters, 45, 3745-3748(2020).
[76] Yanagisawa T, Asaka K, Hirano Y. 10.9-mJ single-frequency diode-pumped Q-switched Er, Yb∶glass laser for a coherent Doppler lidar[J]. Proceedings of SPIE, 4153, 86-92(2001).
[77] Deng Y, Yu X, Yao B Q et al. Single-frequency, Q-switched Er∶YAG at room temperature injection-seeded by an Er∶YAG nonplanar ring oscillator[J]. Laser Physics, 24, 045809(2014).
[78] Fukuoka H, Kadoya M, Asaba K et al. Injection-seeded Tm∶Ho laser[J]. Proceedings of SPIE, 4153, 455-462(2001).
[79] Koch G J, Petros M, Yu J R et al. Precise wavelength control of a single-frequency pulsed Ho∶Tm∶YLF laser[J]. Applied Optics, 41, 1718-1721(2002).
[83] Botha L R, Bollig C, Esser M J D et al. Ho∶YLF pumped HBr laser[J]. Optics Express, 17, 20615-20622(2009).
[84] Bai Y X, Yu J R, Petzar P et al. Single longitudinal mode, high repetition rate, Q-switched Ho∶YLF laser for remote sensing[C]. //2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, June 2-4, 2009, Baltimore, MD, USA., 1-2(2009).
[85] Dai T Y, Ju Y L, Duan X M et al. 2130.7 nm, single-frequency Q-switched operation of Tm,Ho∶YAlO3 laser injection-seeded by a microchip Tm,Ho∶YAlO3 laser[J]. Applied Physics Express, 5, 082702(2012).
[87] Sakimura T, Watanabe Y, Ando T et al. 1.5-μm high average power laser amplifier using an Er, Yb∶glass planar waveguide for coherent Doppler lidar[J]. Proceedings of SPIE, 8526, 852604(2012).
[90] Yu J R, Trieu B C, Modlin E A et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 31, 462-464(2006).
[91] Strauss H J, Koen W, Bollig C et al. Ho∶YLF & Ho∶LuLF slab amplifier system delivering 200 mJ, 2 μm single-frequency pulses[J]. Optics Express, 19, 13974-13979(2011).
[92] Strauss H J, Preussler D, Esser M J D et al. 330 mJ single-frequency Ho∶YLF slab amplifier[J]. Optics Letters, 38, 1022-1024(2013).
[94] Na Q X, Gao C Q, Wang Q et al. 44 mJ, 2.1 μm single-frequency Ho∶YAG amplifier[J]. Applied Optics, 56, 1257-1260(2017).
Get Citation
Copy Citation Text
Qing Wang, Chunqing Gao. Research Progress on Eye-Safe All-Solid-State Single-Frequency Lasers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501004
Category: laser devices and laser physics
Received: Oct. 30, 2020
Accepted: Dec. 28, 2020
Published Online: Mar. 3, 2021
The Author Email: Wang Qing (qingwang@bit.edu.cn), Gao Chunqing (gao@bit.edu.cn)