Acta Optica Sinica, Volume. 44, Issue 24, 2428010(2024)

Method of Shared Nearest Neighbors in Hyperspectral Image Band Selection Considering Local Density

Yuxuan Wang1,2, Xiaobing Sun1、*, Rufang Ti1, Honglian Huang1, and Xiao Liu1
Author Affiliations
  • 1Key Laboratory of General Optical Calibration and Characterization Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2University of Science and Technology of China, Hefei 230026, Anhui , China
  • show less
    Figures & Tables(14)
    Flowchart of SNBS
    Process of optimizing segmentation points based on the Euclidean distances from the subspace center to the remaining bands
    Optimization of subspace interval points based on band sharing neighbors
    Estimation of single-band noise in the Salinas dataset
    Color image and ground truth map on the Indian Pines dataset, with the ground truth transparently overlaid on the color image
    Color image and ground truth map on the Salinas dataset
    Color image and ground truth map on the Pavia University Scene dataset
    Replace different methods for the selection part and calculate the OA values of SVM and KNN on three datasets. (a)(d) Indian Pines dataset; (b)(e) Salinas dataset; (c)(f) Pavia University Scene dataset
    OA values of SVM and KNN for both the proposed method and the comparative methods on three datasets. (a)(d) Indian Pines dataset; (b)(e) Salinas dataset; (c)(f) Pavia University Scene dataset.
    • Table 1. OA values for SVM classification using different parameter settings on the Indian Pines dataset

      View table

      Table 1. OA values for SVM classification using different parameter settings on the Indian Pines dataset

      ZnBand number
      5101520253035404550
      5262.0673.7176.0780.3580.3879.3179.3980.4680.6180.61
      361.1572.8075.7479.2979.8078.4979.7880.4878.8779.07
      461.2972.5777.5978.7079.7279.0780.2779.5981.0381.52
      10261.6172.0076.3977.8880.2278.6379.8580.1180.0481.42
      360.6272.1176.1078.2779.1180.1080.1279.9079.5581.53
      458.8172.3076.1277.5379.7079.2380.6979.2680.5581.78
      15262.0975.2277.3879.6879.4780.1979.8980.0179.5881.04
      361.4674.0676.8179.6780.2680.4181.5480.5178.9779.65
      462.5975.0476.8380.1480.2280.1080.7580.0080.0180.23
    • Table 2. OA values for SVM classification using different parameter settings on the Salinas dataset

      View table

      Table 2. OA values for SVM classification using different parameter settings on the Salinas dataset

      ZnBand number
      5101520253035404550
      5288.8791.3691.3092.1192.2592.6792.4492.6692.7692.96
      388.8091.3192.0292.2792.1892.3892.2392.5192.6992.89
      488.7191.5791.7892.0292.0392.2692.3392.5792.7392.63
      10288.8391.1291.6491.9492.3492.6192.1392.5992.5092.83
      388.7090.8991.6892.2092.0992.3992.1392.3092.4892.61
      488.5191.2391.3591.7392.1892.1892.2192.4892.5892.46
      15287.6891.2791.7391.9992.0892.4092.2992.5892.7292.87
      387.6891.1291.5591.6692.3992.1992.2892.4492.7192.87
      487.1791.0791.3291.8491.9692.1992.2692.3892.6592.80
    • Table 3. OA values for SVM classification using different parameter settings on the Pavia University Scene dataset

      View table

      Table 3. OA values for SVM classification using different parameter settings on the Pavia University Scene dataset

      ZnBand number
      5101520253035404550
      5284.3386.7592.7093.0392.8692.3993.3093.3693.1693.70
      384.2588.4991.8092.9792.9793.3593.5393.3593.1693.55
      484.8188.3892.0190.1792.9693.4893.1793.2093.4493.64
      10284.1388.0588.8792.7692.7392.8193.3393.4893.5793.66
      385.1688.5091.0392.5492.4492.9493.6193.4393.7493.64
      484.7588.5690.8190.9793.2593.2093.4093.6193.5893.20
      15283.5188.3889.2792.7093.4992.6793.0593.4093.5193.72
      383.1787.5590.8692.7792.8693.3993.8393.6493.5293.87
      482.7488.8090.4891.8493.1693.3993.5093.3793.8493.51
    • Table 4. Best AOA values for different methods

      View table

      Table 4. Best AOA values for different methods

      DatasetMethodSVMKNN
      Indian PinesSNBS81.02±0.1969.53±0.13
      DIG81.51±0.2369.41±0.15
      ASPS-MN80.59±0.2568.88±0.12
      ASPS-EI80.32±0.3468.22±0.29
      PIENL79.59±0.2668.21±0.17
      UBS79.46±0.1667.91±0.11
      SalinasSNBS88.23±0.1491.68±0.10
      DIG87.56±0.1191.54±0.07
      ASPS-MN87.34±0.1591.49±0.11
      ASPS-EI87.56±0.1991.24±0.13
      PIENL87.32±0.1791.13±0.14
      UBS87.41±0.1391.34±0.09

      Pavia University

      Scene

      SNBS92.16±0.2187.45±0.12
      DIG91.81±0.1387.43±0.06
      ASPS-MN92.02±0.1886.77±0.08
      ASPS-EI91.76±0.1486.75±0.08
      PIENL91.75±0.1586.37±0.10
      UBS91.46±0.0986.35±0.04
    • Table 5. Comparison of runtime for different methods when selecting 20 bands

      View table

      Table 5. Comparison of runtime for different methods when selecting 20 bands

      DatasetSNBSDIGAPSP-EIAPSP-MNPIENLUBS
      Indian Pines0.2140.2050.3270.3100.4120.001
      Salinas0.5280.5121.1181.1141.2640.001

      Pavia University

      Scene

      0.5970.5761.2341.2591.3470.001
    Tools

    Get Citation

    Copy Citation Text

    Yuxuan Wang, Xiaobing Sun, Rufang Ti, Honglian Huang, Xiao Liu. Method of Shared Nearest Neighbors in Hyperspectral Image Band Selection Considering Local Density[J]. Acta Optica Sinica, 2024, 44(24): 2428010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 11, 2024

    Accepted: Jun. 4, 2024

    Published Online: Dec. 17, 2024

    The Author Email: Sun Xiaobing (xbsun@aiofm.ac.cn)

    DOI:10.3788/AOS240843

    CSTR:32393.14.AOS240843

    Topics