Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 2001(2025)
Mixed-Metal Synergies Enables Sodium-Ion Battery Sulfide Anodes to Achieve Long Cycle Stability at Ultra-High Currents Density
[1] [1] DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Adv Energy Mater, 2018, 8(17): 1703137.
[2] [2] LI C, YAN L J, WANG M J, et al. Synthesis strategies and applications for pitch-based anode: From industrial by-products to power sources[J]. Chem Rec, 2023, 23(2): e202200216.
[3] [3] YANG C, XIN S, MAI L Q, et al. Materials design for high-safety sodium-ion battery[J]. Adv Energy Mater, 2021, 11(2): 2000974.
[4] [4] WANG J M, WANG B B, SUN H M, et al. Heterogeneous interface containing selenium vacancies space-confined in double carbon to induce superior electronic/ionic transport dynamics for sodium/potassium-ion half/full batteries[J]. Energy Storage Mater, 2022, 46: 394–405.
[5] [5] GOIKOLEA E, PALOMARES V, WANG S J, et al. Na-ion batteries: Approaching old and new challenges[J]. Adv Energy Mater, 2020, 10(44): 2002055.
[6] [6] YU X Y, LOU X W. Mixed metal sulfides for electrochemical energy storage and conversion[J]. Adv Energy Mater, 2018, 8(3): 1701592.
[7] [7] GUAN B Y, YU L, WANG X, et al. Formation of onion-like NiCo2S4 particlesviasequential ion-exchange for hybrid supercapacitors[J]. Adv Mater, 2017, 29(6): 1605051.
[8] [8] MA L L, ZHOU X M, SUN J, et al. Synergy mechanism of defect engineering in MoS2/FeS2/C heterostructure for high-performance sodium-ion battery[J]. J Energy Chem, 2023, 82: 268–276.
[9] [9] REN G Y, TANG T T, SONG S S, et al. Prussian blue analogue derived CoS2/FeS2 confined in N, S dual-doped carbon nanofibers for sodium storage[J]. ACS Appl Nano Mater, 2023, 6(19): 18071–18082.
[10] [10] CHOI S H, KANG Y C. Synergetic effect of yolk-shell structure and uniform mixing of SnS-MoS2 nanocrystals for improved Na-ion storage capabilities[J]. ACS Appl Mater Interfaces, 2015, 7(44): 24694–24702.
[11] [11] FANG Y J, LUAN D Y, LOU X W D. Recent advances on mixed metal sulfides for advanced sodium-ion batteries[J]. Adv Mater, 2020, 32(42): e2002976.
[12] [12] LIU Y, FANG Y J, ZHAO Z W, et al. Sodium-ion batteries: A ternary Fe1–xS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Adv Energy Mater, 2019, 9(9): 1970026.
[13] [13] DONG C F, GUO L J, LI H B, et al. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries[J]. Energy Storage Mater, 2020, 25: 679–686.
[14] [14] ZHAO J, ZHANG Y, CHEN X, et al. Entropy-change driven highly reversible sodium storage for conversion-type sulfide[J]. Adv Funct Mater, 2022, 32(45): 2206531.
[15] [15] WEI Y Q, YAO R Z, LIU X H, et al. Understanding the configurational entropy evolution in metal-phosphorus solid solution for highly reversible Li-ion batteries[J]. Adv Sci, 2023, 10(9): e2300271.
[16] [16] GABRIEL E, MA C R, GRAFF K, et al. Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives[J]. eScience, 2023, 3(5): 100139.
[17] [17] WANG S J, ZHAO S, GUO X, et al. 2D material-based heterostructures for rechargeable batteries[J]. Adv Energy Mater, 2022, 12(4): 2100864.
[18] [18] YIN J P, YANG H N, WEN Z S. FeS2@CNT composite with synergistic battery/capacitor builds outstanding sodium-ion storage[J]. Mater Lett, 2021, 284: 128926.
[19] [19] JIANG Y Z, HU M J, ZHANG D, et al. Transition metal oxides for high performance sodium ion battery anodes[J]. Nano Energy, 2014, 5: 60–66.
[20] [20] GABRIEL E, HOU D W, LEE E, et al. Multiphase layered transition metal oxide positive electrodes for sodium ion batteries[J]. Energy Sci Eng, 2022, 10(5): 1672–1705.
[21] [21] ZHAI X G, ZUO Z C, XIONG Z C, et al. Large-scale CuS nanotube arrays@graphdiyne for high-performance sodium ion battery[J]. 2D Mater, 2022, 9(2): 025024.
[22] [22] XIAO Y H, SU D C, WANG X Z, et al. Batteries: CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(22): 1870099.
[23] [23] JE J, LIM H, JUNG H W, et al. Ultrafast and ultrastable heteroarchitectured porous nanocube anode composed of CuS/FeS2 embedded in nitrogen-doped carbon for use in sodium-ion batteries[J]. Small, 2022, 18(6): e2105310.
[24] [24] XIA G H, LI X B, GU Y, et al. Flower-like NiS/C as high-performance anode material for sodium-ion batteries[J]. Ionics, 2021, 27(1): 191–197.
[25] [25] ZENG T B, CHEN Q D, DING Y H, et al. Multiphase nano Co9S8/CoS encapsulated in N-doped carbon for high capacity sodium-ion battery anode[J]. J Energy Storage, 2024, 76: 109849.
[26] [26] LU Z X, WANG W X, ZHOU J, et al. FeS2@TiO2 nanorods as high-performance anode for sodium ion battery[J]. Chin J Chem Eng, 2020, 28(10): 2699–2706.
[27] [27] FU L K, XIONG W Q, LIU Q M, et al. Metal-organic framework derived FeS/MoS2 composite as a high performance anode for sodium-ion batteries[J]. J Alloys Compd, 2021, 869: 159348.
[28] [28] INAMDAR A I, SALUNKE A S, HOU B, et al. Highly durable and sustainable copper–iron–tin–sulphide (Cu2FeSnS4) anode for Li-ion batteries: Effect of operating temperatures[J]. Dalton Trans, 2023, 52(34): 12020–12029.
[29] [29] WANG X, WANG B J, YANG J C, et al.In situformed FeS2@CoS cathode for long cycling life lithium-ion battery[J]. Chin Phys B, 2021, 30(8): 088201.
[30] [30] JIANG M, FAN W T, LIU G Z, et al. One‐dimensional NiS‐CNT@Li7P3S11 nanocomposites as ionic/electronic additives for LiCoO2 based all‐solid‐state lithium batteries[J]. Electrochim Acta, 2021, 398: 139280.
[31] [31] YUAN Z Y, WANG L L, LI D D, et al. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries[J]. ACS Nano, 2021, 15(4): 7439–7450.
[32] [32] ZHANG G, OU X W, YANG J H, et al. Molecular coupling and self-assembly strategy toward WSe2/carbon micro-nano hierarchical structure for elevated sodium-ion storage[J]. Small Methods, 2021, 5(8): e2100374.
[33] [33] YU S H, JIN A H, HUANG X, et al. SnS/C nanocomposites for high-performance sodium ion battery anodes[J]. RSC Adv, 2018, 8(42): 23847–23853.
[34] [34] RU J J, HE T, CHEN B J, et al. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries[J]. Angew Chem Int Ed, 2020, 59(34): 14621–14627.
[35] [35] SHEN Z, CAO L, RAHN C D, et al. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement[J]. J Electrochem Soc, 2013, 160(10): A1842–A1846.
[36] [36] WANG Y H, ZHANG Y Y, LI H, et al. Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries[J]. Chem Eng J, 2018, 332: 49–56.
[37] [37] GAO Y, ZHANG H, LIU X H, et al. Low-cost polyanion-type sulfate cathode for sodium-ion battery[J]. Adv Energy Mater, 2021, 11(42): 2101751.
Get Citation
Copy Citation Text
YANG Lin, HUANG Siming, MA Jingxiong, FENG Yuanlong, DAI Wenjing, ZHOU Yingning, QIN Qinshi, LI Yangguang, WANG Mingshan. Mixed-Metal Synergies Enables Sodium-Ion Battery Sulfide Anodes to Achieve Long Cycle Stability at Ultra-High Currents Density[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 2001
Category:
Received: Dec. 12, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: