Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1561(2025)

Progress on Halide Solid Electrolytes in All-Solid-State Sodium Batteries

HUANG Huijuan, YANG Hai, YAO Yu, and YU Yan*
Author Affiliations
  • Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • show less
    References(72)

    [1] [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.

    [2] [2] WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chem Soc Rev, 2020, 49(5): 1569–1614.

    [3] [3] PENG J, LI H, CHEN L Q, et al. Application of liquid metal electrodes in electrochemical energy storage[J]. Precis Chem, 2023, 1(8): 452–467.

    [4] [4] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114(23): 11636–11682.

    [5] [5] LI S T, DU X S, LIU Z Y, et al. Size effects of atomically precise gold nanoclusters in catalysis[J]. Precis Chem, 2023, 1(1): 14–28.

    [6] [6] CAO B, DU M J, GUO Z R, et al. The future of carbon anodes for lithium-ion batteries: The rational regulation of graphite interphase[J]. Carbon Future, 2024, 1(3): 9200017.

    [7] [7] LI Y, WU F, LI Y, et al. Multilevel gradient-ordered silicon anode with unprecedented sodium storage[J]. Adv Mater, 2024, 36(7): e2310270.

    [8] [8] HUANG J W, WU K, XU G, et al. Recent progress and strategic perspectives of inorganic solid electrolytes: Fundamentals, modifications, and applications in sodium metal batteries[J]. Chem Soc Rev, 2023, 52(15): 4933–4995.

    [9] [9] MA Q L, ORTMANN T, YANG A K, et al. Enhancing the dendrite tolerance of NaSICON electrolytes by suppressing edge growth of Na electrode along ceramic surface[J]. Adv Energy Mater, 2022, 12(40): 2201680.

    [10] [10] CHEN Y, LUN Z Y, ZHAO X Y, et al. Unlocking Li superionic conductivity in face-centred cubic oxidesviaface-sharing configurations[J]. Nat Mater, 2024, 23(4): 535–542.

    [12] [12] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790–8839.

    [13] [13] WANG X E, ZHANG C, SAWCZYK M, et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether- based electrolytes[J]. Nat Mater, 2022, 21(9): 1057–1065.

    [14] [14] TIAN W Y, LI Z P, MIAO L C, et al. Composite quasi-solid-state electrolytes with organic–inorganic interface engineering for fast ion transport in dendrite-free sodium metal batteries[J]. Adv Mater, 2024, 36(13): 2308586.

    [15] [15] YANG A K, YAO K, SCHALLER M, et al. Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12[J]. eScience, 2023, 3(6): 100175.

    [16] [16] HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nat Commun, 2012, 3: 856.

    [17] [17] CUAN J, ZHOU Y, ZHOU T F, et al. Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes[J]. Adv Mater, 2019, 31(1): e1803533.

    [18] [18] RIDLEY P, NGUYEN L H B, SEBTI E, et al. Amorphous and nanocrystalline halide solid electrolytes with enhanced sodium-ion conductivity[J]. Matter, 2024, 7(2): 485–499.

    [19] [19] XU J, WANG Y Q, WU S Y, et al. New halide-based sodium-ion conductors Na3Y2Cl9 inversely designed by building block construction[J]. ACS Appl Mater Interfaces, 2023, 15(17): 21086–21096.

    [20] [20] YANG Y X, YANG S M, XUE X, et al. Inorganic all-solid-state sodium batteries: Electrolyte designing and interface engineering[J]. Adv Mater, 2024, 36(1): 2308332.

    [21] [21] PARK D, KIM K, CHUN G H, et al. Materials design of sodium chloride solid electrolytes Na3MCl6 for all-solid-state sodium-ion batteries[J]. J Mater Chem A, 2021, 9(40): 23037–23045.

    [22] [22] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.

    [23] [23] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv Mater, 2018, 30(44): e1803075.

    [24] [24] HEO G, SOON A, LEE T. Data-mining fluoride-based solid-state electrolytes for monovalent metal batteries[J]. J Mater Chem A, 2024, 12(40): 27409–27420.

    [25] [25] ZULUETA Y A, PHAM-HO M P, NGUYEN M T. Assessing the feasibility of Na6MgCl8 as a material for all-solid-state sodium ion batteries: A theoretical approach[J]. J Phys Chem Solids, 2024, 188: 111916.

    [26] [26] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429–1461.

    [27] [27] KMIEC S, RUOFF E, MANTHIRAM A. A new class of oxyhalide solid electrolytes NaNbCl6–2xOx for solid-state sodium batteries[J]. Angew Chem Int Ed, 2025, 64(5): e202416979.

    [28] [28] PARK J, HAN D, SON J P, et al. Extending the electrochemical window of Na+ halide nanocomposite solid electrolytes for 5 V-class all-solid-state Na-ion batteries[J]. ACS Energy Lett, 2024, 9(5): 2222–2230.

    [29] [29] WU E A, BANERJEE S, TANG H M, et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries[J]. Nat Commun, 2021, 12(1): 1256.

    [30] [30] SEBTI E, QI J, RICHARDSON P M, et al. Synthetic control of structure and conduction properties in Na–Y–Zr–Cl solid electrolytes[J]. J Mater Chem A, 2022, 10(40): 21565–21578.

    [31] [31] SCHLEM R, BANIK A, ECKARDT M, et al. Na3–xEr1–xZrxCl6: A halide-based fast sodium-ion conductor with vacancy-driven ionic transport[J]. ACS Appl Energy Mater, 2020, 3(10): 10164–10173.

    [32] [32] FU C Y, LI Y F, XU W J, et al. LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries[J]. Nat Commun, 2024, 15(1): 4315.

    [33] [33] FU J M, WANG S, WU D J, et al. Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors[J]. Adv Mater, 2024, 36(3): 2308012.

    [34] [34] LI L, YAO J M, XU R N, et al. Highly stable and encapsulation- microstructural cathode derived by self-pressurization behavior in Na-halides-based all-solid-state batteries[J]. Energy Storage Mater, 2023, 63: 103016.

    [35] [35] KWAK H, HAN D, SON J P, et al. Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+xZr1–xMxCl6 (M = In, Sc)[J]. Chem Eng J, 2022, 437: 135413.

    [36] [36] KWAK H, LYOO J, PARK J, et al. Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries[J]. Energy Storage Mater, 2021, 37: 47–54.

    [37] [37] SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors[J]. Adv Energy Mater, 2020, 10(6): 1903719.

    [38] [38] WANG S, FU J M, LIU Y S, et al. Design principles for sodium superionic conductors[J]. Nat Commun, 2023, 14(1): 7615.

    [39] [39] KIM K, PARK D, JUNG H G, et al. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries[J]. Chem Mater, 2021, 33(10): 3669–3677.

    [40] [40] NIKODIMOS Y, SU W N, HWANG B J. Halide solid-state electrolytes: Stability and application for high voltage all-solid-state Li batteries[J]. Adv Energy Mater, 2023, 13(3): 2202854.

    [41] [41] WANG Q D, ZHOU Y N, WANG X L, et al. Designing lithium halide solid electrolytes[J]. Nat Commun, 2024, 15(1): 1050.

    [42] [42] NIE X H, HU J L, LI C L. Halide-based solid electrolytes: The history, progress, and challenges[J]. Interdiscip Mater, 2023, 2(3): 365–389.

    [43] [43] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039–8043.

    [44] [44] ZHAO T, SAMANTA B, DE IRUJO-LABALDE X M, et al. Sodium metal oxyhalides NaMOCl4 (M= Nb, Ta) with high ionic conductivities[J]. ACS Mater Lett, 2024, 6(8): 3683–3689.

    [45] [45] ZHOU L D, BAZAK J D, LI C, et al. 4 V Na solid state batteries enabled by a scalable sodium metal oxyhalide solid electrolyte[J]. ACS Energy Lett, 2024, 9(8): 4093–4101.

    [46] [46] HUANG Z, YOSHIDA S, AKAMATSU H, et al. NaMCl6 (M = Nb and Ta): A new class of sodium-conducting halide-based solid electrolytes[J]. ACS Mater Lett, 2024, 6(5): 1732–1738.

    [47] [47] ADAMS S. Origin of fast Li+-ion conductivity in the compressible oxyhalide LiNbOCl4[J]. Energy Storage Mater, 2024, 68: 103359.

    [48] [48] CHAUPATNAIK A, ROUSSE G, PEREZ A J, et al. Synthesis, structure, and electrochemistry of crystallized layered chlorides, LiMCl6 (M = Ta/Nb)[J]. Adv Energy Mater, 2024, 14(45): 2402555.

    [49] [49] LI F, CHENG X B, LU G X, et al. Amorphous chloride solid electrolytes with high Li-ion conductivity for stable cycling of all-solid-state high-nickel cathodes[J]. J Am Chem Soc, 2023, 145(50): 27774–27787.

    [50] [50] ISHIGURO Y, UENO K, NISHIMURA S, et al. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries[J]. Chem Lett, 2023, 52(4): 237–241.

    [51] [51] HU Y, FU J M, XU J B, et al. Superionic amorphous NaTaCl6 halide electrolyte for highly reversible all-solid-state Na-ion batteries[J]. Matter, 2024, 7(3): 1018–1034.

    [52] [52] ZHAO T, SOBOLEV A N, MARTINEZ DE IRUJO LABALDE X, et al. On the influence of the coherence length on the ionic conductivity in mechanochemically synthesized sodium-conducting halides, Na3–xIn1–xZrxCl6[J]. J Mater Chem A, 2024, 12(12): 7015–7024.

    [53] [53] OKADA Y, KIMURA T, MOTOHASHI K, et al. Mechanochemical synthesis and characterization of Na3–xIn1–xZrxCl6 solid electrolyte[J]. Electrochemistry, 2023, 91(7): 077009.

    [54] [54] ZHAO T, KRAFT M A, ZEIER W G. Synthesis-controlled polymorphism and anion solubility in the sodium-ion conductor Na3InCl6–xBrx (0≤x≤2)[J]. Inorg Chem, 2023, 62(30): 11737–11745.

    [55] [55] ZHAO T, SOBOLEV A N, SCHLEM R, et al. Synthesis-controlled cation solubility in solid sodium ion conductors Na2+xZr1–xInxCl6[J]. ACS Appl Energy Mater, 2023, 6(8): 4334–4341.

    [56] [56] YU Q J, HU J L, NIE X H, et al. Liquid metal mediated heterostructure fluoride solid electrolytes of high conductivity and air stability for sustainable Na metal batteries[J]. ACS Nano, 2024.

    [57] [57] YU Q J, XU Y, HU J L, et al. Heterostructured fluoride-based solid electrolytes engineered by grain boundary softening and bonding for sustainable Na metal batteries[J]. Energy Storage Mater, 2024, 73: 103795.

    [58] [58] RUOFF E, KMIEC S, MANTHIRAM A. Enhanced interfacial conduction in low-cost NaAlCl4 composite solid electrolyte for solid-state sodium batteries[J]. Adv Energy Mater, 2024, 14(37): 2402091.

    [59] [59] PARK J, SON J P, KO W, et al. NaAlCl4: New halide solid electrolyte for 3 V stable cost-effective all-solid-state Na-ion batteries[J]. ACS Energy Lett, 2022, 7(10): 3293–3301.

    [60] [60] WEPPNER W, HUGGINS R A. Ionic conductivity of solid and liquid LiAlCl4[J]. J Electrochem Soc, 124(1): 35–38.

    [61] [61] ZULUETA Y A, FERNNDEZ-GAMBOA J R, PHUNG T V B, et al. Unraveling fundamental characteristics of Na2Mg3Cl8 as a solid-state electrolyte for Na-ion batteries[J]. RSC Adv, 2024, 14(45): 33619–33628.

    [62] [62] LIU Y S, WANG S, NOLAN A M, et al. Tailoring the cation lattice for chloride lithium-ion conductors[J]. Adv Energy Mater, 2020, 10(40): 2002356.

    [63] [63] HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nat Rev Chem, 2023, 7(12): 826–842.

    [64] [64] OH J A S, HE L C, CHUA B, et al. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries[J]. Energy Storage Mater, 2021, 34: 28–44.

    [65] [65] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Lett, 2022, 7(5): 1776–1805.

    [66] [66] WANG C H, LIANG J W, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Sci Adv, 2021, 7(37): eabh1896.

    [67] [67] LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angew Chem Int Ed, 2019, 58(46): 16427–16432.

    [68] [68] QIE Y, WANG S, FU S J, et al. Yttrium-sodium halides as promising solid-state electrolytes with high ionic conductivity and stability for Na-ion batteries[J]. J Phys Chem Lett, 2020, 11(9): 3376–3383.

    [69] [69] GOODWIN L E, ZIEGLER M, TILL P, et al. Halide and sulfide electrolytes in cathode composites for sodium all-solid-state batteries and their stability[J]. ACS Appl Mater Interfaces, 2024, 16(15): 19792–19805.

    [70] [70] LI R, XU K Q, LIU K N, et al. Computational screening of Na3MBr6 compounds as sodium solid electrolytes[J]. Chem Mater, 2022, 34(18): 8356–8365.

    [71] [71] HUSSAIN F, YU P C, ZHU J L, et al. Theoretical prediction of spinel Na2InxSc0.666–xCl4 and rock-salt Na3In1–xScxCl6 superionic conductors for all-solid-state sodium-ion batteries[J]. Adv. Theory Simul., 2023, 6(1): 2200569.

    [72] [72] OH J A S, SUN J G, GOH M, et al. A robust solid–solid interface using sodium–tin alloy modified metallic sodium anode paving way for all-solid-state battery[J]. Adv Energy Mater, 2021, 11(32): 2101228.

    [73] [73] LIN X T, ZHANG S M, YANG M H, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries[J]. Nat Mater, 2025, 24: 83–91.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Huijuan, YANG Hai, YAO Yu, YU Yan. Progress on Halide Solid Electrolytes in All-Solid-State Sodium Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1561

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 4, 2025

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: YU Yan (yanyumse@ustc.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20250066

    Topics