Acta Optica Sinica, Volume. 44, Issue 7, 0707001(2024)

Pulse Wave Denoising Based on Improved Complementary Ensemble Empirical Mode Decomposition

Yong Chen1、*, Zhimin Yao1, Huanlin Liu2, Junpeng Liao1, Li Xu1, and Yanqing Feng1
Author Affiliations
  • 1Key Laboratory of Industrial Internet of Things & Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    Figures & Tables(14)
    Pulse wave signal acquisition method
    Simulated signal graph. (a) Signal with 5 dB Gaussian white noise; (b) signal with 10 dB Gaussian white noise; (c) signal with 15 dB Gaussian white noise; (d) signal with 20 dB Gaussian white noise
    Decomposition diagram of 5 dB simulation signal
    Mean mutual information of different white noise amplitudes for 5 dB simulation signal
    Pulse wave denoising flow chart
    FBG pulse wave detection device photo. (a) Wrist band; (b) pulse wave detection device
    CSI algorithm for processing original pulse wave signal. (a) Original pulse wave signal; (b) processed pulse wave signal
    Initial IMF component obtained by EEMD
    Denoising effects of different algorithms. (a) CEEMD; (b) IIWT; (c) TIWT; (d) proposed algorithm
    • Table 1. SNR results for different algorithms

      View table

      Table 1. SNR results for different algorithms

      Original /dBCEEMD20IIWT11TIWT12Proposed
      59.5749.88513.31115.785
      1013.55115.11019.82620.458
      1518.63820.26125.75027.653
      2019.78523.92228.41129.526
      2520.56928.81629.32831.959
    • Table 2. RMSE results for different algorithms

      View table

      Table 2. RMSE results for different algorithms

      Original /dBCEEMD20IIWT11TIWT12Proposed
      52.9132.7191.8331.251
      102.0451.4910.8650.793
      151.5230.8230.4370.305
      200.9780.5410.3220.296
      250.7460.3080.2910.215
    • Table 3. Basic physiological data of participants

      View table

      Table 3. Basic physiological data of participants

      CharacteristicNumber or mean±SD
      Number n5
      Age /a24.3±2.1
      Height /cm173±5.1
      Weight /kg72±12.3
      BMI /(kg/m220.6±4.2

      Systolic/diastolic blood

      pressure /mmHg

      113.5/72.1±17.2/5.8
    • Table 4. Mutual information mean values of IMF components corresponding to different white noise amplitudes

      View table

      Table 4. Mutual information mean values of IMF components corresponding to different white noise amplitudes

      Amplitude of white noiseMean value of multual information
      0.100.852
      0.200.834
      0.300.821
      0.350.785
      0.400.806
    • Table 5. Correlation coefficients between IMF components and original pulse wave signals

      View table

      Table 5. Correlation coefficients between IMF components and original pulse wave signals

      IMF componentCorrelation coefficientIMF componentCorrelation coefficient
      IMF10.2311IMF70.0089
      IMF20.8767IMF80.0047
      IMF30.8895IMF90.0043

      IMF4

      IMF5

      0.9234

      0.0312

      IMF10

      IMF11

      0.0035

      0.0033

      IMF60.0269
    Tools

    Get Citation

    Copy Citation Text

    Yong Chen, Zhimin Yao, Huanlin Liu, Junpeng Liao, Li Xu, Yanqing Feng. Pulse Wave Denoising Based on Improved Complementary Ensemble Empirical Mode Decomposition[J]. Acta Optica Sinica, 2024, 44(7): 0707001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier optics and signal processing

    Received: Oct. 24, 2023

    Accepted: Jan. 10, 2024

    Published Online: Apr. 11, 2024

    The Author Email: Chen Yong (chenyong@cqupt.edu.cn)

    DOI:10.3788/AOS231695

    CSTR:32393.14.AOS231695

    Topics