Photonics Research, Volume. 8, Issue 10, A50(2020)
Exciton binding energy and effective mass of CsPbCl3: a magneto-optical study
[1] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542-546(2014).
[2] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. Il Seok. High-performance photovoltaic perovskite layers fabricated through intermolecular exchange. Science, 348, 1234-1237(2015).
[4] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting diodes. Nat. Nanotechnol., 10, 391-402(2015).
[5] B. R. Sutherland, E. H. Sargent. Perovskite photonic sources. Nat. Photonics, 10, 295-302(2016).
[6] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, Q. Xiong. Room-temperature near-infrared high
[7] K. Lin, J. Xing, L. N. Quan, F. Pelayo Garcia de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 562, 245-248(2018).
[8] L. T. Dou, Y. (Micheal) Yang, J. B. You, Z. R. Hong, W. H. Chang, G. Li, Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).
[9] R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong. Room-temperature polariton lasing in all-inorganic perovskites nanoplatelets. Nano Lett., 17, 3982-3988(2017).
[10] P. Bouteyre, H. S. Nguyen, J. S. Lauret, G. Trippe-Allard, G. Delport, F. Ledee, H. Diab, A. Belarouci, C. Seassal, D. Garrot, F. Bretenaker, E. Deleporte. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photon., 6, 1804-1811(2019).
[11] S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, J. Shi, X. Wu, N. Tang, Q. Zhang, X. Liu. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity. ACS Photon., 7, 327-337(2020).
[12] R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, Q. Xiong. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv., 4, eaau0244(2018).
[13] R. Sui, S. Ghosh, J. Wang, S. Liu, C. Diederichs, T. C. H. Liew, Q. Xiong. Observation of exciton polariton condensation in perovskite lattice at room temperature. Nat. Phys., 16, 301-306(2020).
[14] Y.-S. Park, S. Guo, N. S. Makarov, V. I. Klimov. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano, 9, 10386-10393(2015).
[15] F. Hu, H. Zhang, C. Sun, C. Yin, B. Lv, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, M. Xiao. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano, 9, 12410-12416(2015).
[16] C. Huo, C. F. Fong, M. R. Amara, Y. Huang, B. Chen, H. Zhang, L. Guo, H. Li, W. Huang, C. Diederichs, Q. Xiong. Optical spectroscopy of single colloidal CsPbBr3 perovskite nanoplatelets. Nano Lett., 20, 3673-3680(2020).
[17] Z. G. Yu. Effective-mass model and magneto-optical properties in hybrid perovskites. Sci. Rep., 6, 28576(2016).
[18] J. Ramade, L. M. Andriambariarijaona, V. Steinmetz, N. Goubet, L. Legrand, T. Barisien, F. Bernardot, C. Testelin, E. Lhuillier, A. Bramati, M. Chamarro. Fine structure of excitons and electron-hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale, 10, 6393-6401(2018).
[19] P. C. Sercel, J. L. Lyons, D. Wickramaratne, R. Vaxenburg, N. Bernstein, A. L. Efros. Exciton fine structure in perovskite nanocrystals. Nano Lett., 19, 4068-4077(2019).
[20] R. Ben Aich, I. Saïdi, S. Ben Radhia, K. Boujdaria, T. Barisien, L. Legrand, F. Bernardot, M. Chamarro, C. Testelin. Bright-exciton splittings in inorganic cesium lead halide perovskite nanocrystals. Phys. Rev. Appl., 11, 034042(2019).
[21] R. Ben Aich, S. Ben Radhia, K. Boujdaria, M. Chamarro, C. Testelin. Multiband k·p model for tetragonal crystals: application to hybrid halide perovskite nanocrystals. J. Phys. Chem. Lett., 11, 808-817(2020).
[22] M. Baranowski, K. Galkowski, A. Surrente, J. Urban, L. Klopotowski, S. Mackowsk, D. K. Maude, R. Ben Aich, K. Boujdaria, M. Chamarro, C. Testelin, P. K. Nayak, M. Dollmann, H. J. Snaith, R. J. Nicholas, P. Plochocka. Giant fine structure splitting of the bright exciton in a bulk MAPbBr3 single crystal. Nano Lett., 19, 7054-7061(2019).
[23] L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, Y. Kanemitsu. Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase. J. Phys. Chem. Lett., 7, 2316-2321(2016).
[24] P. Odenthal, W. Talmadge, N. Gundlach, R. Wang, C. Zhang, D. Sun, Z. G. Yu, Z. V. Vardeny, Y. S. Li. Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites. Nat. Phys., 13, 894-900(2017).
[25] Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, Q. Xiong. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 26, 6238-6245(2016).
[26] X. X. He, P. Liu, H. H. Zhang, Q. Liao, J. N. Yao, H. B. Fu. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater., 29, 1604510(2017).
[27] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang. Room-temperature ultraviolet nanowire nanolasers. Science, 292, 1897-1899(2001).
[28] W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, V. I. Klimov. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc., 138, 14954-14961(2016).
[29] D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon, D. H. Son. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett., 16, 7376-7380(2016).
[30] X. Yuan, S. H. Ji, M. C. De Siena, L. L. Fei, Z. Zhao, Y. J. Wang, H. B. Li, J. L. Zhao, D. R. Gamelin. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCI3 perovskite nanocrystals with varied dopant concentration. Chem. Mater., 29, 8003-8011(2017).
[31] K. Saiki, K. Ueno, T. Shimada, A. Koma. Application of van-der-Waals epitaxy to highly heterogeneous systems. J. Cryst. Growth, 95, 603-606(1989).
[32] M. I. Utama, Z. Peng, R. Chen, B. Peng, X. Xu, Y. Dong, L. M. Wong, S. Wang, H. Sun, Q. Xiong. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy. Nano Lett., 11, 3051-3057(2011).
[33] S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, Q. Xiong. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater., 2, 838-844(2014).
[34] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. Xi Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X
[35] H. Ito, J. Nakahara, R. Onaka. Magneto-optical study of the exciton states in CsPbCl3. J. Phys. Soc. Jpn., 47, 1927-1935(1979).
[36] D. Fröhlich, K. Heidrich, G. Trendel. Cesium-trihalogen-plumbates a new class of ionic semiconductors. J. Lumin., 18-19, 385-388(1979).
[37] Z. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall, R. J. Sutton, A. A. Haghighirad, H. J. Snaith, D. K. Maude, P. Plochocka, R. J. Nicholas. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett., 2, 1621-1627(2017).
[38] K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. Tse-Wei Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, R. J. Nicholas. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci., 9, 962-970(2016).
[39] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B, 201, 427-430(1994).
[40] P. C. Makado, N. C. McGill. Energy level of a neutral hydrogen-like system in a constant magnetic field of arbitrary strength. J. Phys. C, 19, 873-885(1986).
[41] K. Galkowski, A. Surrente, M. Baranowski, B. Zhao, Z. Yang, A. Sadhanala, S. Mackowski, S. D. Stranks, P. Plochocka. Excitonic properties of low-band-gap lead–tin halide perovskites. ACS Energy Lett., 4, 615-620(2019).
[42] M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros. Bright triplet excitons in caesium lead halide perovskites. Nature, 553, 189-193(2018).
[43] Y. Kang, S. Han. Intrinsic carrier mobility of cesium lead halide perovskites. Phys. Rev. Appl., 10, 044013(2018).
[44] S. T. A. G. Melissen, F. Labat, P. Sautet, T. Le Bahers. Electronic properties of PbX3CH3NH3 (X=Cl, Br, I) compounds for photovoltaic and photocatalytic applications. Phys. Chem. Chem. Phys., 17, 2199-2209(2015).
[45] M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Muller, B. Epding, W. Kowalsky, L. Kronik, H. J. Snaith, A. Pucci, R. Lovrincic. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz., 3, 613-620(2016).
[46] B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, H. V. Demir. Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser Photon. Rev., 8, 73-93(2014).
[47] D. D. Sell, S. E. Stokowski, R. Dingle, J. V. DiLorenzo. Polariton reflectance and photoluminescence in high purity GaAs. Phys. Rev. B, 7, 4568-4586(1973).
[48] C. Neumaon, A. Notheand, N. O. Lipari. Two-photon magnetoabsorption of ZnTe, CdTE and GaAs. Phys. Rev. B, 37, 922-932(1988).
[49] T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, C. J. Summers. Photoluminescence properties of ZnS epilayers. Appl. Phys. Lett., 81, 2803-2809(1997).
[50] E. Silveira, J. A. Freitas, M. Kneissl, D. W. Treat, N. M. Johnson, G. A. Slack, L. J. Schowalter. Near-bandedge cathodoluminescence of an AlN homoepitaxial film. Appl. Phys. Lett., 84, 3501-3503(2004).
[51] H. Warlimont, W. Martienssen. Springer Handbook of Materials Data(2018).
[52] D. J. Chadi, M. L. Cohen. Correlation between the static dielectric constant and the minimum energy gap. Phys. Lett. A, 49, 381-382(1974).
[53] R. Dalven. Empirical relation between energy gap and lattice constant in cubic semiconductor. Phys. Rev. B, 8, 6033-6034(1973).
Get Citation
Copy Citation Text
Michal Baranowski, Paulina Plochocka, Rui Su, Laurent Legrand, Thierry Barisien, Frederick Bernardot, Qihua Xiong, Christophe Testelin, Maria Chamarro, "Exciton binding energy and effective mass of CsPbCl3: a magneto-optical study," Photonics Res. 8, A50 (2020)
Special Issue: PEROVSKITE PHOTONICS
Received: Jul. 9, 2020
Accepted: Aug. 11, 2020
Published Online: Sep. 27, 2020
The Author Email: Maria Chamarro (maria.chamarro@insp.jussieu.fr)